메뉴 건너뛰기




Volumn 3889 LNCS, Issue , 2006, Pages 854-861

Super-Gaussian mixture source model for ICA

Author keywords

[No Author keywords available]

Indexed keywords

NON-GAUSSIAN MIXTURE MODELS; SUPER-GAUSSIAN DENSITIES; SUPER-GAUSSIAN MIXTURE SOURCE MODEL;

EID: 33745711477     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11679363_106     Document Type: Conference Paper
Times cited : (76)

References (19)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 2
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • H. Attias. Independent factor analysis. Neural Computation, 11:803-851, 1999.
    • (1999) Neural Computation , vol.11 , pp. 803-851
    • Attias, H.1
  • 5
    • 0037848978 scopus 로고    scopus 로고
    • Variational learning of clusters of undercomplete nonsymmetric independent components
    • K. Chan, T.-W. Lee, and T. J. Sejnowski. Variational learning of clusters of undercomplete nonsymmetric independent components. Journal of Machine Learning Research, 3:99-114, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 99-114
    • Chan, K.1    Lee, T.-W.2    Sejnowski, T.J.3
  • 6
    • 0037270849 scopus 로고    scopus 로고
    • Variational mixture of Bayesian independent component analysers
    • R. A. Choudrey and S. J. Roberts. Variational mixture of Bayesian independent component analysers. Neural Computation, 15(1):213-252, 2002.
    • (2002) Neural Computation , vol.15 , Issue.1 , pp. 213-252
    • Choudrey, R.A.1    Roberts, S.J.2
  • 9
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • M. Girolami. A variational method for learning sparse and overcomplete representations. Neural Computation, 13:2517-2532, 2001.
    • (2001) Neural Computation , vol.13 , pp. 2517-2532
    • Girolami, M.1
  • 12
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation
    • T.-W. Lee, M. S. Lewicki, and T. J. Sejnowski. ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. Pattern Analysis and Machine Intelligence, 22(10): 1078-1089, 2000.
    • (2000) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.22 , Issue.10 , pp. 1078-1089
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 13
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • D. J. C. Mackay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5):1035-1068, 1999.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1035-1068
    • Mackay, D.J.C.1
  • 14
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor. Kluwer
    • R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. Kluwer, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 16
    • 33745729219 scopus 로고    scopus 로고
    • Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution
    • L. K. Saul, Y. Weiss, and L. Bottou, editors Cambridge, MA. MIT Press
    • H.-J. Park and T.-W. Lee. Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2004. MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.14
    • Park, H.-J.1    Lee, T.-W.2
  • 17
    • 0002327756 scopus 로고    scopus 로고
    • Maximum likelihood blind source separation: A context-sensitive generalization of ICA
    • M. Mozer, M. I. Jordan, and T. Petsche, editors. MIT Press
    • B. A. Pearlmutter and L. C. Parra. Maximum likelihood blind source separation: A context-sensitive generalization of ICA. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems. MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems
    • Pearlmutter, B.A.1    Parra, L.C.2
  • 19
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.