-
1
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.-I.1
-
2
-
-
0033561886
-
Independent factor analysis
-
H. Attias. Independent factor analysis. Neural Computation, 11:803-851, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 803-851
-
-
Attias, H.1
-
4
-
-
0019031661
-
Robust identification of a nonminimum phase system
-
A. Benveniste, M. Goursat, and G. Ruget. Robust identification of a nonminimum phase system. IEEE Transactions on Automatic Control, 25(3):385-399, 1980.
-
(1980)
IEEE Transactions on Automatic Control
, vol.25
, Issue.3
, pp. 385-399
-
-
Benveniste, A.1
Goursat, M.2
Ruget, G.3
-
5
-
-
0037848978
-
Variational learning of clusters of undercomplete nonsymmetric independent components
-
K. Chan, T.-W. Lee, and T. J. Sejnowski. Variational learning of clusters of undercomplete nonsymmetric independent components. Journal of Machine Learning Research, 3:99-114, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 99-114
-
-
Chan, K.1
Lee, T.-W.2
Sejnowski, T.J.3
-
6
-
-
0037270849
-
Variational mixture of Bayesian independent component analysers
-
R. A. Choudrey and S. J. Roberts. Variational mixture of Bayesian independent component analysers. Neural Computation, 15(1):213-252, 2002.
-
(2002)
Neural Computation
, vol.15
, Issue.1
, pp. 213-252
-
-
Choudrey, R.A.1
Roberts, S.J.2
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
0038132749
-
A variational method for learning sparse and overcomplete representations
-
M. Girolami. A variational method for learning sparse and overcomplete representations. Neural Computation, 13:2517-2532, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 2517-2532
-
-
Girolami, M.1
-
12
-
-
0034290916
-
ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation
-
T.-W. Lee, M. S. Lewicki, and T. J. Sejnowski. ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. Pattern Analysis and Machine Intelligence, 22(10): 1078-1089, 2000.
-
(2000)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.22
, Issue.10
, pp. 1078-1089
-
-
Lee, T.-W.1
Lewicki, M.S.2
Sejnowski, T.J.3
-
13
-
-
0000597408
-
Comparison of approximate methods for handling hyperparameters
-
D. J. C. Mackay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5):1035-1068, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 1035-1068
-
-
Mackay, D.J.C.1
-
14
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan, editor. Kluwer
-
R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. Kluwer, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
16
-
-
33745729219
-
Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution
-
L. K. Saul, Y. Weiss, and L. Bottou, editors Cambridge, MA. MIT Press
-
H.-J. Park and T.-W. Lee. Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2004. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.14
-
-
Park, H.-J.1
Lee, T.-W.2
-
17
-
-
0002327756
-
Maximum likelihood blind source separation: A context-sensitive generalization of ICA
-
M. Mozer, M. I. Jordan, and T. Petsche, editors. MIT Press
-
B. A. Pearlmutter and L. C. Parra. Maximum likelihood blind source separation: A context-sensitive generalization of ICA. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
-
-
Pearlmutter, B.A.1
Parra, L.C.2
-
19
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
|