-
2
-
-
33344473812
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.235118
-
A. Toschi, M. Capone, and C. Castellani, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.235118 72, 235118 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 235118
-
-
Toschi, A.1
Capone, M.2
Castellani, C.3
-
3
-
-
0000265405
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.59.5431
-
S. Ciuchi and F. de Pasquale, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.59.5431 59, 5431 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 5431
-
-
Ciuchi, S.1
De Pasquale, F.2
-
4
-
-
35949040712
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.15.953
-
P. W. Anderson, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.15. 953 15, 953 (1975).
-
(1975)
Phys. Rev. Lett.
, vol.15
, pp. 953
-
-
Anderson, P.W.1
-
5
-
-
0030528685
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.68.13
-
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.68.13 68, 13 (1996).
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 13
-
-
Georges, A.1
Kotliar, G.2
Krauth, W.3
Rozenberg, M.J.4
-
6
-
-
0037171210
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.88.126403
-
M. Capone, C. Castellani, and M. Grilli, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.126403 88, 126403 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 126403
-
-
Capone, M.1
Castellani, C.2
Grilli, M.3
-
8
-
-
2542535187
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.186405
-
M. Capone and S. Ciuchi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.186405 91, 186405 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 186405
-
-
Capone, M.1
Ciuchi, S.2
-
9
-
-
0037021277
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.196401
-
D. Meyer, A. C. Hewson, and R. Bulla, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.196401 89, 196401 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 196401
-
-
Meyer, D.1
Hewson, A.C.2
Bulla, R.3
-
12
-
-
0034668631
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.62.12800
-
Y. Motome and G. Kotliar, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.62.12800 62, 12800 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 12800
-
-
Motome, Y.1
Kotliar, G.2
-
13
-
-
0001085707
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.59.9923
-
P. Benedetti and R. Zeyher, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.59.9923 59, 9923 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 9923
-
-
Benedetti, P.1
Zeyher, R.2
-
16
-
-
42749101759
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.155103
-
W. Koller, D. Meyer, and A. C. Hewson, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.155103 70, 155103 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 155103
-
-
Koller, W.1
Meyer, D.2
Hewson, A.C.3
-
20
-
-
20744455686
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.66.140504
-
A. Sewer, X. Zotos, and H. Beck, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.66.140504 66, 140504 (R) (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 140504
-
-
Sewer, A.1
Zotos, X.2
Beck, H.3
-
22
-
-
13244287785
-
-
NJOPFM 1367-2630 10.1088/1367-2630/7/1/007
-
A. Toschi, P. Barone, M. Capone, and C. Castellani, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/7/1/007 7, 7 (2005).
-
(2005)
New J. Phys.
, vol.7
, pp. 7
-
-
Toschi, A.1
Barone, P.2
Capone, M.3
Castellani, C.4
-
23
-
-
33745344085
-
-
This finding is analogous to the relation between imaginary-time correlation function of X and charge correlation for the attractive Hubbard model (i.e., the antiadiabatic limit of the Holstein model), where X is the Hubbard-Stratonovich field introduced to decouple the interaction. Here we show that the same kind of relation holds also for finite phonon frequency when X is replaced by the centroid variable Xc.
-
This finding is analogous to the relation between imaginary-time correlation function of X and charge correlation for the attractive Hubbard model (i.e., the antiadiabatic limit of the Holstein model), where X is the Hubbard-Stratonovich field introduced to decouple the interaction. Here we show that the same kind of relation holds also for finite phonon frequency when X is replaced by the centroid variable Xc.
-
-
-
-
24
-
-
33745404288
-
-
Notice that in the partition functions appearing in Eq. 8 the bath propagator G0 -1 (τ) is the one obtained for μ=0. Therefore the response functions obtained from Eq. 8 are local quantities measuring the response to a chemical potential acting only on the impurity site.
-
Notice that in the partition functions appearing in Eq. 8 the bath propagator G0 -1 (τ) is the one obtained for μ=0. Therefore the response functions obtained from Eq. 8 are local quantities measuring the response to a chemical potential acting only on the impurity site.
-
-
-
-
25
-
-
33745347393
-
-
We use the discretization given in Eq. (57) of Ref. without the further approximation leading to Eq. (59).
-
We use the discretization given in Eq. (57) of Ref. without the further approximation leading to Eq. (59).
-
-
-
-
26
-
-
27344442723
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.041301
-
L. Arrachea and M. J. Rozenberg, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.041301 72, 041301 (R) (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 041301
-
-
Arrachea, L.1
Rozenberg, M.J.2
-
27
-
-
18144412801
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.026402
-
V. V. Savkin, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.026402 94, 026402 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 026402
-
-
Savkin, V.V.1
Rubtsov, A.N.2
Katsnelson, M.I.3
Lichtenstein, A.I.4
|