메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 757-789

Asymptotics of solutions to semilinear stochastic wave equations

Author keywords

Bounded solutions; Exponential stability; Invariant measure; Semilinear; Stochastic wave equation

Indexed keywords


EID: 33745328562     PISSN: 10505164     EISSN: 10505164     Source Type: Journal    
DOI: 10.1214/105051606000000141     Document Type: Article
Times cited : (41)

References (25)
  • 1
    • 0003796630 scopus 로고
    • Academic Press, New York
    • ADAMS, R. (1992). Sobolev Spaces. Academic Press, New York.
    • (1992) Sobolev Spaces
    • Adams, R.1
  • 2
    • 0020191373 scopus 로고
    • Stability of nonlinear stochastic evolution equations
    • MR0677738
    • CHOW, P.-L. (1982). Stability of nonlinear stochastic evolution equations. J. Math. Anal. Appl. 89400-419. MR0677738
    • (1982) J. Math. Anal. Appl. , vol.89 , pp. 400-419
    • Chow, P.-L.1
  • 3
    • 0036106973 scopus 로고    scopus 로고
    • Stochastic wave equations with polynomial nonlinearity
    • MR1890069
    • CHOW, P.-L. (2002). Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab. 12 361-381. MR1890069
    • (2002) Ann. Appl. Probab. , vol.12 , pp. 361-381
    • Chow, P.-L.1
  • 5
    • 0346442663 scopus 로고    scopus 로고
    • Stationary solutions of nonlinear stochastic evolution equations
    • MR1478880
    • CHOW, P.-L. and KHASMINSKII, R. Z. (1997). Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl. 15 671-699. MR1478880
    • (1997) Stochastic Anal. Appl. , vol.15 , pp. 671-699
    • Chow, P.-L.1    Khasminskii, R.Z.2
  • 8
    • 0000152394 scopus 로고
    • Dissipativity and invariant measures for stochastic Navier-Stokes equations
    • MR1300150
    • FLANDOLI, F. (1994). Dissipativity and invariant measures for stochastic Navier-Stokes equations. Nonlinear Differential Equations Appl. 1 403-423. MR1300150
    • (1994) Nonlinear Differential Equations Appl. , vol.1 , pp. 403-423
    • Flandoli, F.1
  • 10
    • 0020204928 scopus 로고
    • Stability of semilinear stochastic evolution equations
    • MR0680861
    • ICHIHAWA, A. (1982). Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 90 12-44. MR0680861
    • (1982) J. Math. Anal. Appl. , vol.90 , pp. 12-44
    • Ichihawa, A.1
  • 12
    • 0033481286 scopus 로고    scopus 로고
    • Stability of solutions to semilinear stochastic evolution equations
    • MR1721932
    • LEHA, G., RITTER, G. and MASLOWSKI, B. (1999). Stability of solutions to semilinear stochastic evolution equations. Stochastic Anal. Appl. 17 1009-1051. MR1721932
    • (1999) Stochastic Anal. Appl. , vol.17 , pp. 1009-1051
    • Leha, G.1    Ritter, G.2    Maslowski, B.3
  • 13
    • 0031572726 scopus 로고    scopus 로고
    • On stability for a class of semilinear stochastic evolution equations
    • MR1475664
    • LIU, K. (1997). On stability for a class of semilinear stochastic evolution equations. Stochastic Process. Appl. 70 219-241. MR1475664
    • (1997) Stochastic Process. Appl. , vol.70 , pp. 219-241
    • Liu, K.1
  • 14
    • 0039438826 scopus 로고
    • Uniqueness and stability of invariant measures for stochastic equations in Hubert spaces
    • MR1018545
    • MASLOWSKI, B. (1989). Uniqueness and stability of invariant measures for stochastic equations in Hubert spaces. Stochastics Stochastics Rep. 28 85-114. MR1018545
    • (1989) Stochastics Stochastics Rep. , vol.28 , pp. 85-114
    • Maslowski, B.1
  • 15
    • 84972508255 scopus 로고
    • Integral continuity and stability for stochastic hyperbolic equations
    • MR1195388
    • MASLOWSKI, B., SEIDLER, J. and VRKOČ, I. (1993). Integral continuity and stability for stochastic hyperbolic equations. Differential Integral Equations 6 355-382. MR1195388
    • (1993) Differential Integral Equations , vol.6 , pp. 355-382
    • Maslowski, B.1    Seidler, J.2    Vrkoč, I.3
  • 16
    • 0033201498 scopus 로고    scopus 로고
    • Ergodicity of 2-D Navier-Stokes equations with random forcing and large viscosity
    • MR1722141
    • MATTINGLY, J. C. (1999). Ergodicity of 2-D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 206 273-288. MR1722141
    • (1999) Comm. Math. Phys. , vol.206 , pp. 273-288
    • Mattingly, J.C.1
  • 17
    • 0033415166 scopus 로고    scopus 로고
    • A stochastic wave equation in two space dimension: Smoothness of the law
    • MILLET, A. and SANTZ-SOLÉ, M. (1999). A stochastic wave equation in two space dimension: Smoothness of the law. Ann. Probab. 17 803-844.
    • (1999) Ann. Probab. , vol.17 , pp. 803-844
    • Millet, A.1    Santz-Solé, M.2
  • 18
    • 0000620797 scopus 로고
    • Long time existence for the heat equation with a noise term
    • MR1135557
    • MUELLER, C. (1991). Long time existence for the heat equation with a noise term. Probab. Theory Related Fields 90 505-517. MR1135557
    • (1991) Probab. Theory Related Fields , vol.90 , pp. 505-517
    • Mueller, C.1
  • 19
    • 0031497686 scopus 로고    scopus 로고
    • Long time existence for the wave equation with a noise term
    • MR1428503
    • MUELLER, C. (1997). Long time existence for the wave equation with a noise term. Ann. Probab. 25 133-151. MR1428503
    • (1997) Ann. Probab. , vol.25 , pp. 133-151
    • Mueller, C.1
  • 20
    • 2942555184 scopus 로고    scopus 로고
    • Existence of global mild and strong solutions to stochastic hyperbolic equations driven by a homogeneous Wiener process
    • MR2059301
    • ONDREJÁT, M. (2004). Existence of global mild and strong solutions to stochastic hyperbolic equations driven by a homogeneous Wiener process. J. Evolution Equations 4 169-191. MR2059301
    • (2004) J. Evolution Equations , vol.4 , pp. 169-191
    • Ondreját, M.1
  • 21
    • 0034389942 scopus 로고    scopus 로고
    • Nonlinear stochastic wave and heat equations
    • MR1749283
    • PESZAT, S. and ZABCZYK, J. (2000). Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116 421-443. MR1749283
    • (2000) Probab. Theory Related Fields , vol.116 , pp. 421-443
    • Peszat, S.1    Zabczyk, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.