메뉴 건너뛰기




Volumn 27, Issue 2, 1999, Pages 803-844

A stochastic wave equation in two space dimension: Smoothness of the law

Author keywords

Existence and smoothness of the density; Gaussian noise; Malliavin calculus; Stochastic partial differential equation; Wave equation

Indexed keywords


EID: 0033415166     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1022677387     Document Type: Article
Times cited : (123)

References (15)
  • 1
    • 0009899559 scopus 로고    scopus 로고
    • Trivial solutions for a non-linear two space dimensional wave equation perturbed by a space-time white noise
    • ALBEVERIO, S., HABA, A. and RUSSO, F. (1996). Trivial solutions for a non-linear two space dimensional wave equation perturbed by a space-time white noise. Stochastics Stochastics Rep. 56 127-160.
    • (1996) Stochastics Stochastics Rep. , vol.56 , pp. 127-160
    • Albeverio, S.1    Haba, A.2    Russo, F.3
  • 2
    • 0032327769 scopus 로고    scopus 로고
    • Malliavin calculus for white noise driven parabolic SPDEs
    • BALLY, V. and PARDOUX, E. (1998). Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9 27-64.
    • (1998) Potential Anal. , vol.9 , pp. 27-64
    • Bally, V.1    Pardoux, E.2
  • 3
    • 0007338853 scopus 로고
    • Random nonlinear wave equations: Smoothness of the solutions
    • CARMONA, R. and NUALART, D. (1988). Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79 469-508.
    • (1988) Probab. Theory Related Fields , vol.79 , pp. 469-508
    • Carmona, R.1    Nualart, D.2
  • 4
    • 0032355056 scopus 로고    scopus 로고
    • The stochastic wave equation in two spatial dimensions
    • DALANG, R. and FRANGOS, N. (1998). The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 187-212.
    • (1998) Ann. Probab. , vol.26 , pp. 187-212
    • Dalang, R.1    Frangos, N.2
  • 8
    • 0031497686 scopus 로고    scopus 로고
    • Long time existence for the wave equation with a noise term
    • MUELLER, C. (1997). Long time existence for the wave equation with a noise term. Ann. Probab. 25 133-151.
    • (1997) Ann. Probab. , vol.25 , pp. 133-151
    • Mueller, C.1
  • 11
    • 21444439436 scopus 로고    scopus 로고
    • The law of the solution to a nonlinear hyperbolic SPDE
    • ROVIRA, C. and SANZ-SOLÉ, M. (1996). The law of the solution to a nonlinear hyperbolic SPDE. J. Theoret. Probab. 9 863-901.
    • (1996) J. Theoret. Probab. , vol.9 , pp. 863-901
    • Rovira, C.1    Sanz-Solé, M.2
  • 14
    • 0003316208 scopus 로고
    • Lectures on stochastic differential equations and Malliavin calculus
    • Springer, Berlin
    • WATANABE, S. (1984). Lectures on stochastic differential equations and Malliavin calculus. Tata Inst. Fund. Res. Springer, Berlin.
    • (1984) Tata Inst. Fund. Res.
    • Watanabe, S.1
  • 15
    • 0010921644 scopus 로고
    • The Cauchy problem for the wave equation with distributional data: An elementary approach
    • WILCOX, C. H. (1991). The Cauchy problem for the wave equation with distributional data: an elementary approach. Amer. Math. Monthly 98 401-410.
    • (1991) Amer. Math. Monthly , vol.98 , pp. 401-410
    • Wilcox, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.