-
1
-
-
0009899559
-
Trivial solutions for a non-linear two space dimensional wave equation perturbed by a space-time white noise
-
ALBEVERIO, S., HABA, A. and RUSSO, F. (1996). Trivial solutions for a non-linear two space dimensional wave equation perturbed by a space-time white noise. Stochastics Stochastics Rep. 56 127-160.
-
(1996)
Stochastics Stochastics Rep.
, vol.56
, pp. 127-160
-
-
Albeverio, S.1
Haba, A.2
Russo, F.3
-
2
-
-
0032327769
-
Malliavin calculus for white noise driven parabolic SPDEs
-
BALLY, V. and PARDOUX, E. (1998). Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9 27-64.
-
(1998)
Potential Anal.
, vol.9
, pp. 27-64
-
-
Bally, V.1
Pardoux, E.2
-
3
-
-
0007338853
-
Random nonlinear wave equations: Smoothness of the solutions
-
CARMONA, R. and NUALART, D. (1988). Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79 469-508.
-
(1988)
Probab. Theory Related Fields
, vol.79
, pp. 469-508
-
-
Carmona, R.1
Nualart, D.2
-
4
-
-
0032355056
-
The stochastic wave equation in two spatial dimensions
-
DALANG, R. and FRANGOS, N. (1998). The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 187-212.
-
(1998)
Ann. Probab.
, vol.26
, pp. 187-212
-
-
Dalang, R.1
Frangos, N.2
-
8
-
-
0031497686
-
Long time existence for the wave equation with a noise term
-
MUELLER, C. (1997). Long time existence for the wave equation with a noise term. Ann. Probab. 25 133-151.
-
(1997)
Ann. Probab.
, vol.25
, pp. 133-151
-
-
Mueller, C.1
-
11
-
-
21444439436
-
The law of the solution to a nonlinear hyperbolic SPDE
-
ROVIRA, C. and SANZ-SOLÉ, M. (1996). The law of the solution to a nonlinear hyperbolic SPDE. J. Theoret. Probab. 9 863-901.
-
(1996)
J. Theoret. Probab.
, vol.9
, pp. 863-901
-
-
Rovira, C.1
Sanz-Solé, M.2
-
14
-
-
0003316208
-
Lectures on stochastic differential equations and Malliavin calculus
-
Springer, Berlin
-
WATANABE, S. (1984). Lectures on stochastic differential equations and Malliavin calculus. Tata Inst. Fund. Res. Springer, Berlin.
-
(1984)
Tata Inst. Fund. Res.
-
-
Watanabe, S.1
-
15
-
-
0010921644
-
The Cauchy problem for the wave equation with distributional data: An elementary approach
-
WILCOX, C. H. (1991). The Cauchy problem for the wave equation with distributional data: an elementary approach. Amer. Math. Monthly 98 401-410.
-
(1991)
Amer. Math. Monthly
, vol.98
, pp. 401-410
-
-
Wilcox, C.H.1
|