메뉴 건너뛰기




Volumn 4, Issue 2, 2004, Pages 169-191

Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process

Author keywords

Homogeneous Wiener process; Stochastic hyperbolic equations

Indexed keywords


EID: 2942555184     PISSN: 14243199     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (37)

References (25)
  • 2
    • 0009958809 scopus 로고
    • Stochastic differential equations in Hilbert spaces
    • Banach Center Publications
    • CHOJNOWSKA-MICHALIK, A., Stochastic differential equations in Hilbert spaces, Probability Theory, Banach Center Publications, vol. 5, (1979), 53-74.
    • (1979) Probability Theory , vol.5 , pp. 53-74
    • Chojnowska-Michalik, A.1
  • 3
    • 0036106973 scopus 로고    scopus 로고
    • Stochastic Wave Equations with Polynomial Nonlinearity
    • CHOW, P.-L., Stochastic Wave Equations with Polynomial Nonlinearity, The Annals of Applied Probability, 12 (2002) no. 1, 361-381.
    • (2002) The Annals of Applied Probability , vol.12 , Issue.1 , pp. 361-381
    • Chow, P.-L.1
  • 4
    • 0020191373 scopus 로고
    • Stability of Nonlinear Stochastic-Evolution Equations
    • CHOW, P.-L., Stability of Nonlinear Stochastic-Evolution Equations, J. Math. Anal. and Appl. 89 (1982), 400-419.
    • (1982) J. Math. Anal. and Appl. , vol.89 , pp. 400-419
    • Chow, P.-L.1
  • 5
    • 23044534488 scopus 로고    scopus 로고
    • Nonexplosion of solutions to stochastic reaction diffusion equations
    • DOZZI, M. and MASLOWSKI, B., Nonexplosion of solutions to stochastic reaction diffusion equations, Zeitschrift Angew. Math. Mech. 82 (2002), 745-751.
    • (2002) Zeitschrift Angew. Math. Mech. , vol.82 , pp. 745-751
    • Dozzi, M.1    Maslowski, B.2
  • 7
    • 0003228130 scopus 로고    scopus 로고
    • Partial Differential Equations
    • AMS, Providence, RI
    • EVANS, L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19. AMS, Providence, RI, 1998.
    • (1998) Graduate Studies in Mathematics , pp. 19
    • Evans, L.C.1
  • 8
    • 0003304963 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • Berlin-Heidelberg-New York: Springer-Verlag. IV
    • HENRY, D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Berlin-Heidelberg-New York: Springer-Verlag. IV, 1981.
    • (1981) Lecture Notes in Mathematics , vol.840
    • Henry, D.1
  • 10
    • 2942523571 scopus 로고    scopus 로고
    • Transience and non-explosion of certain stochastic Newtonian systems
    • KOLOKOLTSOV, V. N., SCHILLING, R. L. and TYUKOV, A. E., Transience and non-explosion of certain stochastic Newtonian systems, Electron. J. Probab. 7 (2002) no. 19, 1-19.
    • (2002) Electron. J. Probab. , vol.7 , Issue.19 , pp. 1-19
    • Kolokoltsov, V.N.1    Schilling, R.L.2    Tyukov, A.E.3
  • 12
    • 0035413566 scopus 로고    scopus 로고
    • On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution
    • MILLET, A. and MORIEN, P.-L., On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution, Ann. Appl. Probab 11 (2001) no. 3, 922-951.
    • (2001) Ann. Appl. Probab. , vol.11 , Issue.3 , pp. 922-951
    • Millet, A.1    Morien, P.-L.2
  • 13
    • 2942583806 scopus 로고
    • Energy bounds for nonlinear dissipative stochastic differential equations with respect to semimartingales
    • [Ma-Ma] MAO, X. and MARKUS, L., Energy bounds for nonlinear dissipative stochastic differential equations with respect to semimartingales, Stochastics Stochastics Rep. 37 (1991), 1-14.
    • (1991) Stochastics Stochastics Rep. , vol.37 , pp. 1-14
    • Mao, X.1    Markus, L.2
  • 15
    • 84972511462 scopus 로고
    • Remarks on non explosion theorem for stochastic differential equations
    • NARITA, K., Remarks on non explosion theorem for stochastic differential equations, Kodai Math. J. 5 (1982), 395-401.
    • (1982) Kodai Math. J. , vol.5 , pp. 395-401
    • Narita, K.1
  • 16
    • 0040174384 scopus 로고
    • Explosion time of second-order Ito processes
    • NARITA, K., Explosion time of second-order Ito processes, J. Math. Anal. Appl. 104 (1984), 418-427.
    • (1984) J. Math. Anal. Appl. , vol.104 , pp. 418-427
    • Narita, K.1
  • 19
    • 0347488345 scopus 로고    scopus 로고
    • The Cauchy Problem for a Non Linear Stochastic Wave Equation in any Dimension
    • PESZAT, S., The Cauchy Problem for a Non Linear Stochastic Wave Equation in any Dimension, J. Evol. Equ. 2 (2002), 383-394.
    • (2002) J. Evol. Equ. , vol.2 , pp. 383-394
    • Peszat, S.1
  • 21
    • 0034389942 scopus 로고    scopus 로고
    • Non Linear Stochastic Wave and Heat Equations
    • PESZAT, S. and Zabczyk, J., Non Linear Stochastic Wave and Heat Equations, Probability Theory Related Fields 116 (2000) no. 3, 421-443.
    • (2000) Probability Theory Related Fields , vol.116 , Issue.3 , pp. 421-443
    • Peszat, S.1    Zabczyk, J.2
  • 22
    • 0031574567 scopus 로고    scopus 로고
    • Stochastic evolution equations with a spatially homogeneous Wiener process
    • PESZAT, S. and Zabczyk, J., Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997) no. 2, 187-204.
    • (1997) Stochastic Process. Appl. , vol.72 , Issue.2 , pp. 187-204
    • Peszat, S.1    Zabczyk, J.2
  • 25
    • 38249017417 scopus 로고
    • On sufficient conditions for nonexplosion of solutions to stochastic differential equations
    • TANIGUCHI, T., On sufficient conditions for nonexplosion of solutions to stochastic differential equations, J. Math. Anal. Appl. 153 (1990), 549-561.
    • (1990) J. Math. Anal. Appl. , vol.153 , pp. 549-561
    • Taniguchi, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.