-
3
-
-
0032478818
-
-
SCIEAS 0036-8075 10.1126/science.280.5360.69
-
D. A. Doyle, Science SCIEAS 0036-8075 10.1126/science.280.5360.69 280, 69 (1998).
-
(1998)
Science
, vol.280
, pp. 69
-
-
Doyle, D.A.1
-
4
-
-
3142652094
-
-
QURBAW 0033-5835 10.1017/S0033583504003968
-
B. Roux, T. Allen, S. Berneche, and W. Im, Q. Rev. Biophys. QURBAW 0033-5835 10.1017/S0033583504003968 37, 15 (2004).
-
(2004)
Q. Rev. Biophys.
, vol.37
, pp. 15
-
-
Roux, B.1
Allen, T.2
Berneche, S.3
Im, W.4
-
6
-
-
45849155018
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.70.051912
-
B. Nadler, Z. Schuss, U. Hollerbach, and R. S. Eisenberg, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.70.051912 70, 051912 (2004).
-
(2004)
Phys. Rev. e
, vol.70
, pp. 051912
-
-
Nadler, B.1
Schuss, Z.2
Hollerbach, U.3
Eisenberg, R.S.4
-
12
-
-
0017866923
-
-
BIOJAU 0006-3495
-
D. G. Levitt, Biophys. J. BIOJAU 0006-3495 22, 209 (1978).
-
(1978)
Biophys. J.
, vol.22
, pp. 209
-
-
Levitt, D.G.1
-
13
-
-
0019581345
-
-
BICIAZ 0301-4622 10.1016/0301-4622(81)80002-6
-
P. C. Jordan, Biophys. Chem. BICIAZ 0301-4622 10.1016/0301-4622(81)80002- 6 13, 203 (1981).
-
(1981)
Biophys. Chem.
, vol.13
, pp. 203
-
-
Jordan, P.C.1
-
14
-
-
0014481138
-
-
NATUAS 0028-0836
-
A. Parsegian, Nature (London) NATUAS 0028-0836 221, 844 (1969).
-
(1969)
Nature (London)
, vol.221
, pp. 844
-
-
Parsegian, A.1
-
15
-
-
0020170486
-
-
BIOJAU 0006-3495
-
P. C. Jordan, Biophys. J. BIOJAU 0006-3495 39, 157 (1982).
-
(1982)
Biophys. J.
, vol.39
, pp. 157
-
-
Jordan, P.C.1
-
16
-
-
27344435607
-
-
PHYADX 0378-4371 10.1016/j.physa.2005.05.097
-
A. Kamenev, J. Zhang, A. I. Larkin, and B. I. Shklovskii, Physica A PHYADX 0378-4371 10.1016/j.physa.2005.05.097 359, 129 (2006).
-
(2006)
Physica A
, vol.359
, pp. 129
-
-
Kamenev, A.1
Zhang, J.2
Larkin, A.I.3
Shklovskii, B.I.4
-
21
-
-
0017349281
-
-
JMBBBO 0022-2631 10.1007/BF01869403
-
H. J. Appel, E. Bamberg, H. Alpes, and P. Lauger, J. Membr. Biol. JMBBBO 0022-2631 10.1007/BF01869403 31, 171 (1977).
-
(1977)
J. Membr. Biol.
, vol.31
, pp. 171
-
-
Appel, H.J.1
Bamberg, E.2
Alpes, H.3
Lauger, P.4
-
22
-
-
0037855911
-
-
JCOMEL 0953-8984 10.1088/0953-8984/15/17/202
-
A. Meller, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/15/17/202 15, R581 (2003).
-
(2003)
J. Phys.: Condens. Matter
, vol.15
, pp. 581
-
-
Meller, A.1
-
23
-
-
0030974351
-
-
JACSAT 0002-7863
-
J. D. Lear, J. P. Schneider, P. K. Kienker, and W. F. DeGrado, J. Am. Chem. Soc. JACSAT 0002-7863 119, 3212 (1997);
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 3212
-
-
Lear, J.D.1
Schneider, J.P.2
Kienker, P.K.3
Degrado, W.F.4
-
24
-
-
0032989631
-
-
BIOJAU 0006-3495
-
G. R. Dieckmann, Biophys. J. BIOJAU 0006-3495 76, 618 (1999).
-
(1999)
Biophys. J.
, vol.76
, pp. 618
-
-
Dieckmann, G.R.1
-
25
-
-
0035849885
-
-
NATUAS 0028-0836 10.1038/35084037
-
J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature (London) NATUAS 0028-0836 10.1038/35084037 412, 166 (2001);
-
(2001)
Nature (London)
, vol.412
, pp. 166
-
-
Li, J.1
Stein, D.2
McMullan, C.3
Branton, D.4
Aziz, M.J.5
Golovchenko, J.A.6
-
26
-
-
4344568092
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.035901
-
D. Stein, M. Kruithof, and C. Dekker, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.035901 93, 035901 (2004);
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 035901
-
-
Stein, D.1
Kruithof, M.2
Dekker, C.3
-
27
-
-
4444234147
-
-
BIOJAU 0006-3495 10.1529/biophysj.104.042960
-
A. Aksimentiev, J. B. Heng, G. Timp, and K. Schulten, Biophys. J. BIOJAU 0006-3495 10.1529/biophysj.104.042960 87, 2086 (2004);
-
(2004)
Biophys. J.
, vol.87
, pp. 2086
-
-
Aksimentiev, A.1
Heng, J.B.2
Timp, G.3
Schulten, K.4
-
28
-
-
18044374284
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.048102
-
Z. Siwy, I. D. Kosinska, A. Fulinski, and C. R. Martin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.048102 94, 048102 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 048102
-
-
Siwy, Z.1
Kosinska, I.D.2
Fulinski, A.3
Martin, C.R.4
-
29
-
-
33646816604
-
-
The factor α22 under the logarithm is the result of having two ions at every dopant, and factor of 6 is obtained by integrating up the allowed volumes of the two ions for all possible ion configurations around the dopant.
-
The factor α22 under the logarithm is the result of having two ions at every dopant, and factor of 6 is obtained by integrating up the allowed volumes of the two ions for all possible ion configurations around the dopant.
-
-
-
-
31
-
-
33744767284
-
-
JMAPAQ 0022-2488 10.1063/1.1724281
-
S. F. Edwards and A. Lenard, J. Math. Phys. JMAPAQ 0022-2488 10.1063/1.1724281 3, 778 (1962).
-
(1962)
J. Math. Phys.
, vol.3
, pp. 778
-
-
Edwards, S.F.1
Lenard, A.2
-
32
-
-
0009706135
-
-
JMAPAQ 0022-2488 10.1063/1.1703757
-
A. Lenard, J. Math. Phys. JMAPAQ 0022-2488 10.1063/1.1703757 2, 682 (1961).
-
(1961)
J. Math. Phys.
, vol.2
, pp. 682
-
-
Lenard, A.1
-
33
-
-
33646804001
-
-
To prove it, consider the imaginary part of the Hamiltonian 25, -2q â̂́Ì́ θ - â̂'m αm sin (mθ), as a perturbation. Notice that this operator changes the parity of functions it acts on. The wave functions of the unperturbed real Hermitian Hamiltonian are real and have a definite parity. It is clear then that only even-order (and thus purely real) perturbative corrections to the spectrum can be nonzero. Moreover, since â̂́ θ, is anti-Hermitian, while sin (mθ), is Hermitian, only even powers of q, contribute to this perturbation theory. As a result, the spectrum of the operator 25 Ïμq (j), is a real symmetric function of q.
-
To prove it, consider the imaginary part of the Hamiltonian 25, -2q â̂́Ì́ θ - â̂' m αm sin (mθ), as a perturbation. Notice that this operator changes the parity of functions it acts on. The wave functions of the unperturbed real Hermitian Hamiltonian are real and have a definite parity. It is clear then that only even-order (and thus purely real) perturbative corrections to the spectrum can be nonzero. Moreover, since â̂́Ì́ θ, is anti-Hermitian, while sin (mθ), is Hermitian, only even powers of q, contribute to this perturbation theory. As a result, the spectrum of the operator 25 Ïμ q (j), is a real symmetric function of q.
-
-
-
-
36
-
-
27344454294
-
-
JPSOAW 0022-3719 10.1088/0022-3719/12/22/033
-
A. A. Kornyshev and M. A. Vorotyntsev, J. Phys. C JPSOAW 0022-3719 10.1088/0022-3719/12/22/033 12, 4939 (1979).
-
(1979)
J. Phys. C
, vol.12
, pp. 4939
-
-
Kornyshev, A.A.1
Vorotyntsev, M.A.2
|