메뉴 건너뛰기




Volumn 15, Issue 12, 2003, Pages 2727-2778

General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; CLASSIFICATION; MATHEMATICAL COMPUTING; NERVE CELL; PHYSIOLOGY; REVIEW; STATISTICAL MODEL; TIME;

EID: 10744230566     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976603322518731     Document Type: Review
Times cited : (126)

References (156)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147-169.
    • (1985) Cognitive Science , vol.9 , Issue.1 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 3
    • 51249176497 scopus 로고
    • Asynchronous threshold networks
    • Alon, N. (1985). Asynchronous threshold networks. Graphs and Combinatorics, 1, 305-310.
    • (1985) Graphs and Combinatorics , vol.1 , pp. 305-310
    • Alon, N.1
  • 4
    • 0002972352 scopus 로고
    • Explicit construction of depth-2 majority circuits for comparison and addition
    • Alon, N., & Bruck, J. (1994). Explicit construction of depth-2 majority circuits for comparison and addition. SIAM Journal on Discrete Mathematics, 7(1), 1-8.
    • (1994) SIAM Journal on Discrete Mathematics , vol.7 , Issue.1 , pp. 1-8
    • Alon, N.1    Bruck, J.2
  • 5
    • 0011252246 scopus 로고
    • Efficient simulation of finite automata by neural nets
    • Alon, N., Dewdney, A. K., & Ott, T. J. (1991). Efficient simulation of finite automata by neural nets. Journal of the ACM, 38(2), 495-514.
    • (1991) Journal of the ACM , vol.38 , Issue.2 , pp. 495-514
    • Alon, N.1    Dewdney, A.K.2    Ott, T.J.3
  • 7
    • 0031190762 scopus 로고    scopus 로고
    • Computational power of neural networks: A characterization in terms of Kolmogorov complexity
    • Balcázar, J. L., Gavaldà, R., & Siegelmann, H. T. (1997). Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Transactions on Information Theory, 43(4), 1175-1183.
    • (1997) IEEE Transactions on Information Theory , vol.43 , Issue.4 , pp. 1175-1183
    • Balcázar, J.L.1    Gavaldà, R.2    Siegelmann, H.T.3
  • 8
    • 0242723969 scopus 로고    scopus 로고
    • The structure of logarithmic advice complexity classes
    • Balcázar, J. L., & Hermo, M. (1998). The structure of logarithmic advice complexity classes. Theoretical Computer Science, 207(1), 217-244.
    • (1998) Theoretical Computer Science , vol.207 , Issue.1 , pp. 217-244
    • Balcázar, J.L.1    Hermo, M.2
  • 9
    • 0001051761 scopus 로고
    • On the computational complexity of Ising spin glass models
    • Barahona, F. (1982). On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15(10), 3241-3253.
    • (1982) Journal of Physics A: Mathematical and General , vol.15 , Issue.10 , pp. 3241-3253
    • Barahona, F.1
  • 10
    • 0036222192 scopus 로고    scopus 로고
    • A theory of complexity for continuous time systems
    • Ben-Hur, A., Siegelmann, H. T., & Fishman, S. (2002). A theory of complexity for continuous time systems. Journal of Complexity, 18(1), 51-86.
    • (2002) Journal of Complexity , vol.18 , Issue.1 , pp. 51-86
    • Ben-Hur, A.1    Siegelmann, H.T.2    Fishman, S.3
  • 12
    • 0031236165 scopus 로고    scopus 로고
    • Approximability of the ground state problem for certain Ising spin glasses
    • Bertoni, A., Campadelli, P., Gangai, C., & Posenato, R. (1997). Approximability of the ground state problem for certain Ising spin glasses. Journal of Complexity, 13(3), 323-339.
    • (1997) Journal of Complexity , vol.13 , Issue.3 , pp. 323-339
    • Bertoni, A.1    Campadelli, P.2    Gangai, C.3    Posenato, R.4
  • 13
    • 0001271312 scopus 로고
    • On the ground states of the frustration model of a spin glass by a matching method of graph theory
    • Bieche, I., Maynard, R., Rammal, R., & Uhry, J. P. (1980). On the ground states of the frustration model of a spin glass by a matching method of graph theory. Journal of Physics A: Mathematical and General, 13(8), 2553-2576.
    • (1980) Journal of Physics A: Mathematical and General , vol.13 , Issue.8 , pp. 2553-2576
    • Bieche, I.1    Maynard, R.2    Rammal, R.3    Uhry, J.P.4
  • 15
    • 0024078743 scopus 로고
    • A generalized convergence theorem for neural networks
    • Bruck, J., & Goodman, J. W. (1988). A generalized convergence theorem for neural networks. IEEE Transactions on Information Theory, 34(5), 1089-1092.
    • (1988) IEEE Transactions on Information Theory , vol.34 , Issue.5 , pp. 1089-1092
    • Bruck, J.1    Goodman, J.W.2
  • 16
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey, M. (1996). The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8(6), 1135-1178.
    • (1996) Neural Computation , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.1
  • 18
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 815-826.
    • (1983) IEEE Transactions on Systems, Man, and Cybernetics , vol.13 , Issue.5 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 19
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14(3), 326-334.
    • (1965) IEEE Transactions on Electronic Computers , vol.14 , Issue.3 , pp. 326-334
    • Cover, T.M.1
  • 20
    • 0013995259 scopus 로고
    • Capacity problems for linear machines
    • L. Kanal (Ed.). Washington, DC: Thompson Book Co.
    • Cover, T. M. (1968). Capacity problems for linear machines. In L. Kanal (Ed.), Pattern recognition (pp. 283-289). Washington, DC: Thompson Book Co.
    • (1968) Pattern Recognition , pp. 283-289
    • Cover, T.M.1
  • 21
    • 0010263084 scopus 로고
    • The power of approximating: A comparison of activation functions
    • S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.). San Mateo, CA: Morgan Kaufmann
    • DasGupta, B., & Schnitger, G. (1993). The power of approximating: A comparison of activation functions. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems (NIPS'92), 5 (pp. 615-622). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems (NIPS'92) , vol.5 , pp. 615-622
    • DasGupta, B.1    Schnitger, G.2
  • 22
    • 0030585103 scopus 로고    scopus 로고
    • Analog versus discrete neural networks
    • DasGupta, B., & Schnitger, G. (1996). Analog versus discrete neural networks. Neural Computation, 8(4), 805-818.
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 805-818
    • DasGupta, B.1    Schnitger, G.2
  • 23
    • 0026219835 scopus 로고
    • Worst-case convergence times for Hopfield memories
    • Floréen, P. (1991). Worst-case convergence times for Hopfield memories. IEEE Transactions on Neural Networks, 2(5), 533-535.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.5 , pp. 533-535
    • Floréen, P.1
  • 24
    • 0242679881 scopus 로고
    • On the computational complexity of analyzing Hopfield nets
    • Floréen, P., & Orponen, P. (1989). On the computational complexity of analyzing Hopfield nets. Complex Systems, 3(6), 577-587.
    • (1989) Complex Systems , vol.3 , Issue.6 , pp. 577-587
    • Floréen, P.1    Orponen, P.2
  • 25
    • 0006521147 scopus 로고
    • Attraction radii in Hopfield nets are hard to compute
    • Floréen P., & Orponen, P. (1993). Attraction radii in Hopfield nets are hard to compute. Neural Computation, 5(5), 812-821.
    • (1993) Neural Computation , vol.5 , Issue.5 , pp. 812-821
    • Floréen, P.1    Orponen, P.2
  • 26
    • 11744284260 scopus 로고
    • Research Rep. No. A-1994-4. Helsinki: Department of Computer Science, University of Helsinki
    • Floréen, P., & Orponen, P. (1994). Complexity issues in discrete Hopfield networks (Research Rep. No. A-1994-4). Helsinki: Department of Computer Science, University of Helsinki.
    • (1994) Complexity Issues in Discrete Hopfield Networks
    • Floréen, P.1    Orponen, P.2
  • 27
    • 0020748830 scopus 로고
    • Transient length in sequential iterations of threshold functions
    • Fogelman, F., Goles, E., & Weisbuch, G. (1983). Transient length in sequential iterations of threshold functions. Discrete Applied Mathematics, 6(1), 95-98.
    • (1983) Discrete Applied Mathematics , vol.6 , Issue.1 , pp. 95-98
    • Fogelman, F.1    Goles, E.2    Weisbuch, G.3
  • 28
    • 0040930797 scopus 로고
    • Energy functions in neural networks with continuous local functions
    • Fogelman-Soulié, F., Mejia, C., Goles, E., & Martinez, S. (1989). Energy functions in neural networks with continuous local functions. Complex Systems, 3(3), 269-293.
    • (1989) Complex Systems , vol.3 , Issue.3 , pp. 269-293
    • Fogelman-Soulié, F.1    Mejia, C.2    Goles, E.3    Martinez, S.4
  • 29
    • 0002127588 scopus 로고
    • Parity, circuits and the polynomial-time hierarchy
    • Furst, M., Saxe, J. B., & Sipser, M. (1984). Parity, circuits and the polynomial-time hierarchy. Mathematical Systems Theory, 17(1), 13-27.
    • (1984) Mathematical Systems Theory , vol.17 , Issue.1 , pp. 13-27
    • Furst, M.1    Saxe, J.B.2    Sipser, M.3
  • 32
    • 84893574327 scopus 로고
    • Improved approximate algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M. X., & Williamson, D. P. (1995). Improved approximate algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6), 1115-1145.
    • (1995) Journal of the ACM , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 33
    • 0000069809 scopus 로고
    • Majority gates vs. general weighted threshold gates
    • Goldmann, M., Håstad, J., & Razborov, A. (1992). Majority gates vs. general weighted threshold gates. Computational Complexity, 2(4), 277-300.
    • (1992) Computational Complexity , vol.2 , Issue.4 , pp. 277-300
    • Goldmann, M.1    Håstad, J.2    Razborov, A.3
  • 34
    • 0013416929 scopus 로고    scopus 로고
    • Simulating threshold circuits by majority circuits
    • Goldmann, M., & Karpinski, M. (1998). Simulating threshold circuits by majority circuits. SIAM Journal on Computing, 27(1), 230-246.
    • (1998) SIAM Journal on Computing , vol.27 , Issue.1 , pp. 230-246
    • Goldmann, M.1    Karpinski, M.2
  • 35
    • 0022722612 scopus 로고
    • On the construction of parallel computers from various bases of Boolean functions
    • Goldschlager, L. M., & Parberry, I. (1986). On the construction of parallel computers from various bases of Boolean functions. Theoretical Computer Science, 43(1), 43-48.
    • (1986) Theoretical Computer Science , vol.43 , Issue.1 , pp. 43-48
    • Goldschlager, L.M.1    Parberry, I.2
  • 36
    • 0022241930 scopus 로고
    • Dynamics of positive automata networks
    • Goles, E. (1985). Dynamics of positive automata networks. Theoretical Computer Science, 41(1), 19-32.
    • (1985) Theoretical Computer Science , vol.41 , Issue.1 , pp. 19-32
    • Goles, E.1
  • 37
    • 0011517670 scopus 로고
    • Lyapunov functions associated to automata networks
    • F. Fogelman-Soulié, Y. Robert, & M. Tchuente (Eds.). Manchester: Manchester University Press
    • Goles, E. (1987). Lyapunov functions associated to automata networks. In F. Fogelman-Soulié, Y. Robert, & M. Tchuente (Eds.), Automata networks in computer science - theory and applications (pp. 58-81). Manchester: Manchester University Press.
    • (1987) Automata Networks in Computer Science - Theory and Applications , pp. 58-81
    • Goles, E.1
  • 38
    • 0003579696 scopus 로고
    • Exponential transient classes of symmetric neural networks for synchronous and sequential updating
    • Goles, E., & Martínez, S. (1989). Exponential transient classes of symmetric neural networks for synchronous and sequential updating. Complex Systems, 3(6), 589-597.
    • (1989) Complex Systems , vol.3 , Issue.6 , pp. 589-597
    • Goles, E.1    Martínez, S.2
  • 40
    • 0042907617 scopus 로고
    • Comportement periodique des fonctions a seuil binaires et applications
    • Goles, E., & Olivos, J. (1981a). Comportement periodique des fonctions a seuil binaires et applications. Discrete Applied Mathematics, 3(2), 93-105.
    • (1981) Discrete Applied Mathematics , vol.3 , Issue.2 , pp. 93-105
    • Goles, E.1    Olivos, J.2
  • 41
    • 0019632382 scopus 로고
    • The convergence of symmetric threshold automata
    • Goles, E., & Olivos, J. (1981b). The convergence of symmetric threshold automata. Information and Control, 51(2), 98-104.
    • (1981) Information and Control , vol.51 , Issue.2 , pp. 98-104
    • Goles, E.1    Olivos, J.2
  • 43
    • 0036436502 scopus 로고    scopus 로고
    • A step towards a complexity theory for analog systems
    • Gori, M., & Meer, K. (2002). A step towards a complexity theory for analog systems. Mathematical Logic Quarterly, 48(1), 45-58.
    • (2002) Mathematical Logic Quarterly , vol.48 , Issue.1 , pp. 45-58
    • Gori, M.1    Meer, K.2
  • 46
    • 0242511427 scopus 로고
    • Steepest descent can take exponential time for symmetric connectionist networks
    • Haken, A., & Luby, M. (1988). Steepest descent can take exponential time for symmetric connectionist networks. Complex Systems, 2(2), 191-196.
    • (1988) Complex Systems , vol.2 , Issue.2 , pp. 191-196
    • Haken, A.1    Luby, M.2
  • 49
    • 0002343638 scopus 로고
    • Almost optimal lower bounds for small depth circuits
    • S. Micali (Ed.). Greenwich, CT: JAI Press
    • Håstad, J. (1989). Almost optimal lower bounds for small depth circuits. In S. Micali (Ed.), Advances in computing research, randomness and computation, 5 (pp. 143-170). Greenwich, CT: JAI Press.
    • (1989) Advances in Computing Research, Randomness and Computation , vol.5 , pp. 143-170
    • Håstad, J.1
  • 50
    • 0000420294 scopus 로고
    • On the size of weights for threshold gates
    • Håstad, J. (1994). On the size of weights for threshold gates. SIAM Journal on Discrete Mathematics 7(3), 484-492.
    • (1994) SIAM Journal on Discrete Mathematics , vol.7 , Issue.3 , pp. 484-492
    • Håstad, J.1
  • 51
    • 0042075424 scopus 로고    scopus 로고
    • On the geometric separability of Boolean functions
    • Hegedüs, T., & Megiddo, N. (1996). On the geometric separability of Boolean functions. Discrete Applied Mathematics 66(3), 205-218.
    • (1996) Discrete Applied Mathematics , vol.66 , Issue.3 , pp. 205-218
    • Hegedüs, T.1    Megiddo, N.2
  • 52
    • 0242511430 scopus 로고
    • Depth-efficient threshold circuits for arithmetic functions
    • V. P. Roychowdhury, K.-Y. Siu, & A. Orlitsky (Eds.), Boston: Kluwer
    • Hofmeister, T. (1994). Depth-efficient threshold circuits for arithmetic functions. In V. P. Roychowdhury, K.-Y. Siu, & A. Orlitsky (Eds.), Theoretical advances in neural computation and learning (pp. 37-84). Boston: Kluwer.
    • (1994) Theoretical Advances in Neural Computation and Learning , pp. 37-84
    • Hofmeister, T.1
  • 53
    • 0026205180 scopus 로고
    • Some notes on threshold circuits, and multiplication in depth 4
    • Hofmeister, T., Hohberg, W., & Köhling, S. (1991). Some notes on threshold circuits, and multiplication in depth 4. Information Processing Letters, 39(4), 219-225.
    • (1991) Information Processing Letters , vol.39 , Issue.4 , pp. 219-225
    • Hofmeister, T.1    Hohberg, W.2    Köhling, S.3
  • 54
    • 84865912664 scopus 로고
    • Res. Rep. No. 447. Dortmund: Dortmund University
    • 0 (Res. Rep. No. 447). Dortmund: Dortmund University.
    • (1992) 0
    • Hofmeister, T.1    Pudlák, P.2
  • 55
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA, 79, 2554-2558.
    • (1982) Proceedings of the National Academy of Sciences USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 56
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences USA, 81, 3088-3092.
    • (1984) Proceedings of the National Academy of Sciences USA , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 57
    • 0021835689 scopus 로고
    • "Neural" computation of decision in optimization problems
    • Hopfield, J. J., & Tank, D. W. (1985). "Neural" computation of decision in optimization problems. Biological Cybernetics, 52(3), 141-152.
    • (1985) Biological Cybernetics , vol.52 , Issue.3 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 58
    • 0028733320 scopus 로고
    • On the node complexity of neural networks
    • Horne, B. G., & Hush, D. R. (1994). On the node complexity of neural networks. Neural Networks, 7(9), 1413-1426.
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1413-1426
    • Horne, B.G.1    Hush, D.R.2
  • 59
    • 0030110968 scopus 로고    scopus 로고
    • Bounds on the complexity of recurrent neural network implementations of finite state machines
    • Horne B. G., & Hush, D. R. (1996). Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks, 9(2), 243-252.
    • (1996) Neural Networks , vol.9 , Issue.2 , pp. 243-252
    • Horne, B.G.1    Hush, D.R.2
  • 61
    • 0242511426 scopus 로고    scopus 로고
    • Bounds for the number of threshold functions
    • Irmatov, A. A. (1996). Bounds for the number of threshold functions. Discrete Mathematics and Applications, 6(6), 569-583.
    • (1996) Discrete Mathematics and Applications , vol.6 , Issue.6 , pp. 569-583
    • Irmatov, A.A.1
  • 64
    • 0001713459 scopus 로고    scopus 로고
    • The dynamic universality of sigmoidal neural networks
    • Kilian, J., & Siegelmann, H. T. (1996). The dynamic universality of sigmoidal neural networks. Information and Computation, 125(1), 48-56.
    • (1996) Information and Computation , vol.125 , Issue.1 , pp. 48-56
    • Kilian, J.1    Siegelmann, H.T.2
  • 65
    • 0003067817 scopus 로고
    • Representation of events in nerve nets and finite automata
    • C. E. Shannon, & J. McCarthy (Eds.). Princeton, NJ: Princeton University Press
    • Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In C. E. Shannon, & J. McCarthy (Eds.), Automata studies, Annals of mathematics studies, 34 (pp. 3-41). Princeton, NJ: Princeton University Press.
    • (1956) Automata Studies, Annals of Mathematics Studies , vol.34 , pp. 3-41
    • Kleene, S.C.1
  • 66
    • 0242596164 scopus 로고    scopus 로고
    • Springer series in information sciences. Berlin: Springer-Verlag
    • Kohonen, T. (2001). Self-organizing maps (3rd ext. ed.). Springer series in information sciences, 30. Berlin: Springer-Verlag.
    • (2001) Self-organizing Maps (3rd Ext. Ed.) , vol.30
    • Kohonen, T.1
  • 67
    • 0001213937 scopus 로고
    • Dynamics of discrete time, continuous state Hopfield networks
    • Koiran, P. (1994). Dynamics of discrete time, continuous state Hopfield networks. Neural Computation, 6(3), 459-468.
    • (1994) Neural Computation , vol.6 , Issue.3 , pp. 459-468
    • Koiran, P.1
  • 68
    • 0030284189 scopus 로고    scopus 로고
    • A family of universal recurrent networks
    • Koiran, P. (1996). A family of universal recurrent networks. Theoretical Computer Science, 168(2), 473-480.
    • (1996) Theoretical Computer Science , vol.168 , Issue.2 , pp. 473-480
    • Koiran, P.1
  • 69
    • 0023829082 scopus 로고
    • Convergence results in an associative memory model
    • Komlós, J., & Paturi, R. (1988). Convergence results in an associative memory model. Neural Networks, 1(3), 239-250.
    • (1988) Neural Networks , vol.1 , Issue.3 , pp. 239-250
    • Komlós, J.1    Paturi, R.2
  • 70
    • 0005381638 scopus 로고    scopus 로고
    • Foundations for a circuit complexity theory of sensory processing
    • T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.). Cambridge, MA: MIT Press
    • Legenstein, R. A., & Maass, W. (2001). Foundations for a circuit complexity theory of sensory processing. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (NIPS 2000), 13 (pp. 259-265). Cambridge, MA: MIT Press.
    • (2001) Advances in Neural Information Processing Systems (NIPS 2000) , vol.13 , pp. 259-265
    • Legenstein, R.A.1    Maass, W.2
  • 73
    • 84885606165 scopus 로고
    • Implementing the algebra of logic functions in terms of bounded depth formulas in the basis +,*,-
    • Lupanov, O. B. (1961). Implementing the algebra of logic functions in terms of bounded depth formulas in the basis +,*,-. Soviet Physics Doklady, 6(2), 107-108.
    • (1961) Soviet Physics Doklady , vol.6 , Issue.2 , pp. 107-108
    • Lupanov, O.B.1
  • 74
    • 0242427980 scopus 로고
    • Circuits using threshold elements
    • Lupanov, O. B. (1972). Circuits using threshold elements. Soviet Physics Doklady, 17(2), 91-93.
    • (1972) Soviet Physics Doklady , vol.17 , Issue.2 , pp. 91-93
    • Lupanov, O.B.1
  • 75
    • 85153967884 scopus 로고
    • On the computational complexity of networks of spiking neurons
    • G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.). Cambridge, MA: MIT Press
    • Maass, W. (1995). On the computational complexity of networks of spiking neurons. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems (NIPS'94), 7 (pp. 183-190). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems (NIPS'94) , vol.7 , pp. 183-190
    • Maass, W.1
  • 76
    • 84898929097 scopus 로고    scopus 로고
    • On the computational power of noisy spiking neurons
    • D. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
    • Maass, W. (1996a). On the computational power of noisy spiking neurons. In D. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (NIPS'95), 8 (pp. 211-217). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems (NIPS'95) , vol.8 , pp. 211-217
    • Maass, W.1
  • 77
    • 0001781836 scopus 로고    scopus 로고
    • Lower bounds for the computational power of networks of spiking neurons
    • Maass, W. (1996b). Lower bounds for the computational power of networks of spiking neurons. Neural Computation, 8(1), 1-40.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 1-40
    • Maass, W.1
  • 78
    • 0242427979 scopus 로고    scopus 로고
    • Bounds for the computational power and learning complexity of analog neural nets
    • Maass, W. (1997a). Bounds for the computational power and learning complexity of analog neural nets. SIAM Journal on Computing, 26(3), 708-732.
    • (1997) SIAM Journal on Computing , vol.26 , Issue.3 , pp. 708-732
    • Maass, W.1
  • 79
    • 0031568358 scopus 로고    scopus 로고
    • Fast sigmoidal networks via spiking neurons
    • Maass, W. (1997b). Fast sigmoidal networks via spiking neurons. Neural Computation, 9(2), 279-304.
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 279-304
    • Maass, W.1
  • 80
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • Maass, W. (1997c). Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10(9), 1659-1671.
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1659-1671
    • Maass, W.1
  • 81
    • 0034321873 scopus 로고    scopus 로고
    • On the computational power of Winner-Take-All
    • Maass, W. (2000). On the computational power of Winner-Take-All. Neural Computation, 12(11), 2519-2536.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2519-2536
    • Maass, W.1
  • 83
    • 0345858250 scopus 로고    scopus 로고
    • Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding
    • Maass, W., & Natschläger, T. (1997). Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding. Network: Computation in Neural Systems, 8(4), 355-371.
    • (1997) Network: Computation in Neural Systems , vol.8 , Issue.4 , pp. 355-371
    • Maass, W.1    Natschläger, T.2
  • 84
    • 0034218519 scopus 로고    scopus 로고
    • A model for fast analog computation based on unreliable synapses
    • Maass, W., & Natschläger, T. (2000). A model for fast analog computation based on unreliable synapses. Neural Computation, 12(7), 1679-1704.
    • (2000) Neural Computation , vol.12 , Issue.7 , pp. 1679-1704
    • Maass, W.1    Natschläger, T.2
  • 85
    • 0001243798 scopus 로고    scopus 로고
    • On the effect of analog noise in discrete-time analog computations
    • Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-time analog computations. Neural Computation, 10(5), 1071-1095.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1071-1095
    • Maass, W.1    Orponen, P.2
  • 86
    • 0000201936 scopus 로고    scopus 로고
    • On computation with pulses
    • Maass, W., & Ruf, B. (1999). On computation with pulses. Information and Computation, 148(2), 202-218.
    • (1999) Information and Computation , vol.148 , Issue.2 , pp. 202-218
    • Maass, W.1    Ruf, B.2
  • 87
    • 0004512775 scopus 로고    scopus 로고
    • On the complexity of learning for spiking neurons with temporal coding
    • Maass, W., & Schmitt, M. (1999). On the complexity of learning for spiking neurons with temporal coding. Information and Computation, 153(1), 26-46.
    • (1999) Information and Computation , vol.153 , Issue.1 , pp. 26-46
    • Maass, W.1    Schmitt, M.2
  • 89
    • 0033110325 scopus 로고    scopus 로고
    • Analog neural nets with gaussian or other common noise distribution cannot recognize arbitrary regular languages
    • Maass, W., & Sontag, E. D. (1999). Analog neural nets with gaussian or other common noise distribution cannot recognize arbitrary regular languages. Neural Computation, 11(3), 771-782.
    • (1999) Neural Computation , vol.11 , Issue.3 , pp. 771-782
    • Maass, W.1    Sontag, E.D.2
  • 90
    • 0032620819 scopus 로고    scopus 로고
    • Derandomizing approximation algorithms based on semidefinite programming
    • Mahajan, S., & Ramesh, H. (1999). Derandomizing approximation algorithms based on semidefinite programming. SIAM Journal on Computing, 28(5), 1641-1663.
    • (1999) SIAM Journal on Computing , vol.28 , Issue.5 , pp. 1641-1663
    • Mahajan, S.1    Ramesh, H.2
  • 97
    • 0011995096 scopus 로고
    • The synthesis of networks from threshold elements
    • Nechiporuk, E. I. (1964). The synthesis of networks from threshold elements. Problemy Kibernetiki, 11, 49-62.
    • (1964) Problemy Kibernetiki , vol.11 , pp. 49-62
    • Nechiporuk, E.I.1
  • 98
    • 0043016215 scopus 로고
    • Hyperplane cuts of an n-cube
    • O'Neil, P. E. (1971). Hyperplane cuts of an n-cube. Discrete Mathematics, 1(2), 193-195.
    • (1971) Discrete Mathematics , vol.1 , Issue.2 , pp. 193-195
    • O'Neil, P.E.1
  • 99
    • 0037901061 scopus 로고
    • Computational complexity of neural networks: A survey
    • Orponen, P. (1994). Computational complexity of neural networks: A survey. Nordic Journal of Computing, 1(1), 94-110.
    • (1994) Nordic Journal of Computing , vol.1 , Issue.1 , pp. 94-110
    • Orponen, P.1
  • 100
    • 2342531031 scopus 로고    scopus 로고
    • The computational power of discrete Hopfield nets with hidden units
    • Orponen, P. (1996). The computational power of discrete Hopfield nets with hidden units. Neural Computation, 8(2), 403-415.
    • (1996) Neural Computation , vol.8 , Issue.2 , pp. 403-415
    • Orponen, P.1
  • 101
    • 0000416563 scopus 로고    scopus 로고
    • A survey of continuous-time computation theory
    • D.-Z. Du, & K.-I. Ko (Eds.). Dordrecht: Kluwer
    • Orponen, P. (1997a). A survey of continuous-time computation theory. In D.-Z. Du, & K.-I. Ko (Eds.), Advances in algorithms, languages, and complexity (pp. 209-224). Dordrecht: Kluwer.
    • (1997) Advances in Algorithms, Languages, and Complexity , pp. 209-224
    • Orponen, P.1
  • 102
    • 0031099586 scopus 로고    scopus 로고
    • Computing with truly asynchronous threshold logic networks
    • Orponen, P. (1997b). Computing with truly asynchronous threshold logic networks. Theoretical Computer Science, 174(1-2), 123-136.
    • (1997) Theoretical Computer Science , vol.174 , Issue.1-2 , pp. 123-136
    • Orponen, P.1
  • 106
    • 0242511413 scopus 로고
    • A primer on the complexity theory of neural networks
    • R. B. Banerji (Ed.), Studies in computer science and artificial intelligence, Amsterdam: Elsevier-North-Holland
    • Parberry, I. (1990). A primer on the complexity theory of neural networks. In R. B. Banerji (Ed.), Formal techniques in artificial intelligence: A sourcebook, Studies in computer science and artificial intelligence, 6 (pp. 217-268). Amsterdam: Elsevier-North-Holland.
    • (1990) Formal Techniques in Artificial Intelligence: A Sourcebook , vol.6 , pp. 217-268
    • Parberry, I.1
  • 108
    • 0024777645 scopus 로고
    • Relating Boltzmann machines to conventional models of computation
    • Parberry, I., & Schnitger, G. (1989). Relating Boltzmann machines to conventional models of computation. Neural Networks, 2(1), 56-67.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 56-67
    • Parberry, I.1    Schnitger, G.2
  • 109
    • 51249185440 scopus 로고
    • On periodical behaviour in societies with symmetric influences
    • Poljak, S., & Sůra, M. (1983). On periodical behaviour in societies with symmetric influences. Combinatorica, 3(1), 119-121.
    • (1983) Combinatorica , vol.3 , Issue.1 , pp. 119-121
    • Poljak, S.1    Sůra, M.2
  • 110
    • 0013218227 scopus 로고
    • Stability and looping in connectionist models with asymmetric weights
    • Porat, S. (1989). Stability and looping in connectionist models with asymmetric weights. Biological Cybernetics, 60, 335-344.
    • (1989) Biological Cybernetics , vol.60 , pp. 335-344
    • Porat, S.1
  • 111
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J. C. Mason & M. G. Cox (Eds.). Oxford: Oxford Science Publications
    • Powell, M. J. D. (1985). Radial basis functions for multivariable interpolation: A review. In J. C. Mason & M. G. Cox (Eds.), Proceedings of the IMA Conference on Algorithms for the Approximation of Functions and Data (pp. 143-167). Oxford: Oxford Science Publications.
    • (1985) Proceedings of the IMA Conference on Algorithms for the Approximation of Functions and Data , pp. 143-167
    • Powell, M.J.D.1
  • 112
    • 50549176920 scopus 로고
    • Probabilistic automata
    • Rabin, M. (1963). Probabilistic automata. Information and Control, 6(3), 230-245.
    • (1963) Information and Control , vol.6 , Issue.3 , pp. 230-245
    • Rabin, M.1
  • 114
    • 0026932814 scopus 로고
    • On threshold circuits and polynomial computations
    • Reif, J. H., & Tate, S. R. (1992). On threshold circuits and polynomial computations. SIAM Journal on Computing, 21(5), 896-908.
    • (1992) SIAM Journal on Computing , vol.21 , Issue.5 , pp. 896-908
    • Reif, J.H.1    Tate, S.R.2
  • 115
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 117
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 118
    • 0015415664 scopus 로고
    • Computational work and time on finite machines
    • Savage, J. E. (1972). Computational work and time on finite machines. Journal of the ACM, 19(4), 660-674.
    • (1972) Journal of the ACM , vol.19 , Issue.4 , pp. 660-674
    • Savage, J.E.1
  • 120
    • 0026104905 scopus 로고
    • Simple local search problems that are hard to solve
    • Schäffer, A. A., & Yannakakis, M. (1991). Simple local search problems that are hard to solve. SIAM Journal on Computing, 20(1), 56-87.
    • (1991) SIAM Journal on Computing , vol.20 , Issue.1 , pp. 56-87
    • Schäffer, A.A.1    Yannakakis, M.2
  • 122
    • 0032236218 scopus 로고    scopus 로고
    • On computing Boolean functions by a spiking neuron
    • Schmitt, M. (1998). On computing Boolean functions by a spiking neuron. Annals of Mathematics and Artificial Intelligence, 24(1-4), 181-191.
    • (1998) Annals of Mathematics and Artificial Intelligence , vol.24 , Issue.1-4 , pp. 181-191
    • Schmitt, M.1
  • 123
    • 0040081674 scopus 로고    scopus 로고
    • Descartes' rule of signs for radial basis function neural networks
    • Schmitt, M. (2002). Descartes' rule of signs for radial basis function neural networks. Neural Computation, 14(12), 2997-3011.
    • (2002) Neural Computation , vol.14 , Issue.12 , pp. 2997-3011
    • Schmitt, M.1
  • 125
    • 0030286526 scopus 로고    scopus 로고
    • Recurrent neural networks and finite automata
    • Siegelmann, H. T. (1996). Recurrent neural networks and finite automata. Journal of Computational Intelligence, 12(4), 567-574.
    • (1996) Journal of Computational Intelligence , vol.12 , Issue.4 , pp. 567-574
    • Siegelmann, H.T.1
  • 127
    • 0001255172 scopus 로고    scopus 로고
    • Stochastic analog networks and computational complexity
    • Siegelmann, H. T. (1999b). Stochastic analog networks and computational complexity. Journal of Complexity, 15(4), 451-475.
    • (1999) Journal of Complexity , vol.15 , Issue.4 , pp. 451-475
    • Siegelmann, H.T.1
  • 128
    • 0041668380 scopus 로고    scopus 로고
    • Noisy neural networks and generalizations
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
    • Siegelmann, H. T., Roitershtein, A., & Ben-Hur, A. (2000). Noisy neural networks and generalizations. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems (NIPS'92), 12 (pp. 335-341). Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems (NIPS'92) , vol.12 , pp. 335-341
    • Siegelmann, H.T.1    Roitershtein, A.2    Ben-Hur, A.3
  • 132
    • 0031378623 scopus 로고    scopus 로고
    • Analog stable simulation of discrete neural networks
    • Šíma, J. (1997). Analog stable simulation of discrete neural networks. Neural Network World, 7(6), 679-686.
    • (1997) Neural Network World , vol.7 , Issue.6 , pp. 679-686
    • Šíma, J.1
  • 136
    • 0042878679 scopus 로고    scopus 로고
    • Continuous-time symmetric Hopfield nets are computationally universal
    • Šíma, J., & Orponen, P. (2003). Continuous-time symmetric Hopfield nets are computationally universal. Neural Computation, 15(3), 693-733.
    • (2003) Neural Computation , vol.15 , Issue.3 , pp. 693-733
    • Šíma, J.1    Orponen, P.2
  • 137
    • 0003640275 scopus 로고    scopus 로고
    • On the computational complexity of binary and analog symmetric Hopfield nets
    • Šíma, J., Orponen, P., & Antti-Poika, T. (2000). On the computational complexity of binary and analog symmetric Hopfield nets. Neural Computation, 22(12), 2965-2989.
    • (2000) Neural Computation , vol.22 , Issue.12 , pp. 2965-2989
    • Šíma, J.1    Orponen, P.2    Antti-Poika, T.3
  • 140
    • 0001293189 scopus 로고
    • On optimal depth threshold circuits for multiplication and related problems
    • Siu, K.-Y., & Roychowdhury, V. P. (1994). On optimal depth threshold circuits for multiplication and related problems. SIAM Journal on Discrete Mathematics, 7(2), 284-292.
    • (1994) SIAM Journal on Discrete Mathematics , vol.7 , Issue.2 , pp. 284-292
    • Siu, K.-Y.1    Roychowdhury, V.P.2
  • 142
    • 0006127617 scopus 로고
    • Computing with almost optimal size neural networks
    • S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.). San Mateo, CA: Morgan Kaufmann
    • Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1993). Computing with almost optimal size neural networks. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems (NIPS'92), 5 (pp. 19-26). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems (NIPS'92) , vol.5 , pp. 19-26
    • Siu, K.-Y.1    Roychowdhury, V.P.2    Kailath, T.3
  • 147
    • 36149046562 scopus 로고
    • Analytic theory of the ground state properties of a spin glass: I. Ising spin glass
    • Tanaka, F., & Edwards, S. F. (1980). Analytic theory of the ground state properties of a spin glass: I. Ising spin glass. Journal of Physics F: Metal Physics, 10, 2769-2778.
    • (1980) Journal of Physics F: Metal Physics , vol.10 , pp. 2769-2778
    • Tanaka, F.1    Edwards, S.F.2
  • 148
    • 0022957785 scopus 로고
    • Sequential simulation of parallel iterations and applications
    • Tchuente, M. (1986). Sequential simulation of parallel iterations and applications. Theoretical Computer Science, 48(2-3), 135-144.
    • (1986) Theoretical Computer Science , vol.48 , Issue.2-3 , pp. 135-144
    • Tchuente, M.1
  • 150
    • 0003133883 scopus 로고
    • Probabilistic logics arid the synthesis of reliable organisms from unreliable components
    • C. E. Shannon & J. McCarthy (Eds.), Annals of mathematics studies, Princeton, NJ: Princeton University Press
    • von Neumann, J. (1956). Probabilistic logics arid the synthesis of reliable organisms from unreliable components. In C. E. Shannon & J. McCarthy (Eds.), Automata studies, Annals of mathematics studies, 34 (pp. 43-98). Princeton, NJ: Princeton University Press.
    • (1956) Automata Studies , vol.34 , pp. 43-98
    • Von Neumann, J.1
  • 151
    • 0004203012 scopus 로고
    • Chichester: Wiley/Teubner. Available on-line
    • Wegener, I. (1987). The complexity of Boolean functions. Chichester: Wiley/Teubner. Available on-line at http://www.eccc.uni-trier.de/eccc-local/ ECCC-Books/wegener_book_readme.html.
    • (1987) The Complexity of Boolean Functions
    • Wegener, I.1
  • 152
    • 0002166614 scopus 로고
    • Optimal lower bounds on the depth of polynomial-size threshold circuits for some arithmetic functions
    • Wegener, I. (1993). Optimal lower bounds on the depth of polynomial-size threshold circuits for some arithmetic functions. Information Processing Letters, 46(2), 85-87.
    • (1993) Information Processing Letters , vol.46 , Issue.2 , pp. 85-87
    • Wegener, I.1
  • 154
    • 0038906851 scopus 로고
    • Complexity issues in discrete neurocomputing
    • Wiedermann, J. (1994). Complexity issues in discrete neurocomputing. Neural Network World, 4(1), 99-119.
    • (1994) Neural Network World , vol.4 , Issue.1 , pp. 99-119
    • Wiedermann, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.