-
1
-
-
0033196117
-
Two-dimensional global manifolds of vector fields
-
Krauskopf B., and Osinga H. Two-dimensional global manifolds of vector fields. Chaos, Solitons & Fractals 3 (1999) 768-774
-
(1999)
Chaos, Solitons & Fractals
, vol.3
, pp. 768-774
-
-
Krauskopf, B.1
Osinga, H.2
-
2
-
-
0039165649
-
Numerical Taylor expansions of invariant manifolds in large dynamical systems
-
Wolf J.B., and Winfried K. Numerical Taylor expansions of invariant manifolds in large dynamical systems. Numer Math 80 (1998) 1-38
-
(1998)
Numer Math
, vol.80
, pp. 1-38
-
-
Wolf, J.B.1
Winfried, K.2
-
3
-
-
0032027324
-
Analytic approximation of the homoclinic orbits of the Lorenz system at σ = 10, b = 8/3 and ρ = 13.926...
-
Vakakis A.F., and Azeez M.F.A. Analytic approximation of the homoclinic orbits of the Lorenz system at σ = 10, b = 8/3 and ρ = 13.926.... Nonlin Dyn 15 (1998) 245-257
-
(1998)
Nonlin Dyn
, vol.15
, pp. 245-257
-
-
Vakakis, A.F.1
Azeez, M.F.A.2
-
4
-
-
0031531518
-
Algorithms for computing normally hyperbolic invariant manifolds
-
Broer H.W., Osinga1 H.M., and Vegter G. Algorithms for computing normally hyperbolic invariant manifolds. Zeitschr Angew Math Phys ZAMP 48 (1997) 480-524
-
(1997)
Zeitschr Angew Math Phys ZAMP
, vol.48
, pp. 480-524
-
-
Broer, H.W.1
Osinga, H.M.2
Vegter, G.3
-
5
-
-
0003267742
-
Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations
-
Cambridge University Press
-
Palis J., and Takens F. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge studies in advanced mathematics vol. 35 (1993), Cambridge University Press
-
(1993)
Cambridge studies in advanced mathematics
, vol.35
-
-
Palis, J.1
Takens, F.2
-
8
-
-
0031485993
-
Convergence estimates for the numerical approximation of homoclinic solutions
-
Sandstede B. Convergence estimates for the numerical approximation of homoclinic solutions. IMA J Numer Anal 17 (1997) 437-462
-
(1997)
IMA J Numer Anal
, vol.17
, pp. 437-462
-
-
Sandstede, B.1
-
9
-
-
0001340513
-
The numerical computation of connecting orbits in dynamical systems
-
Beyn W.J. The numerical computation of connecting orbits in dynamical systems. IMA J Numer Anal 9 (1990) 379-405
-
(1990)
IMA J Numer Anal
, vol.9
, pp. 379-405
-
-
Beyn, W.J.1
-
10
-
-
0026170304
-
Numerical computation and continuation of invariant manifolds connecting fixed points
-
Friedman M.J., and Doedel E.J. Numerical computation and continuation of invariant manifolds connecting fixed points. IMA J Numer Anal 28 (1991) 789-808
-
(1991)
IMA J Numer Anal
, vol.28
, pp. 789-808
-
-
Friedman, M.J.1
Doedel, E.J.2
-
11
-
-
0035640984
-
Bounds for attractors and the existence of homoclinic orbits in the Lorenz system
-
Leonov G.A. Bounds for attractors and the existence of homoclinic orbits in the Lorenz system. PMM J Appl Math Mecn 65 (2001) 19-32
-
(2001)
PMM J Appl Math Mecn
, vol.65
, pp. 19-32
-
-
Leonov, G.A.1
-
12
-
-
5144231592
-
Homoclinic and heteroclinic orbits in a modified Lorenz system
-
Li Z., Chen G., and Wolfgang A.H. Homoclinic and heteroclinic orbits in a modified Lorenz system. Inform Sci 165 (2004) 235-245
-
(2004)
Inform Sci
, vol.165
, pp. 235-245
-
-
Li, Z.1
Chen, G.2
Wolfgang, A.H.3
-
13
-
-
0039578991
-
On the strange attractor and transverse homoclinic orbits for the Lorenz equations
-
Spreuer H., and Adams E. On the strange attractor and transverse homoclinic orbits for the Lorenz equations. J Math Anal Appl 190 (1995) 329-360
-
(1995)
J Math Anal Appl
, vol.190
, pp. 329-360
-
-
Spreuer, H.1
Adams, E.2
-
14
-
-
0005692469
-
On the existence and the verified determination of homoclinic and heteroclinic orbits of the origin for the Lorenz equation
-
Spreuer H., Adams E., and Karlsruhe. On the existence and the verified determination of homoclinic and heteroclinic orbits of the origin for the Lorenz equation. Comput Suppl 9 (1993) 233-246
-
(1993)
Comput Suppl
, vol.9
, pp. 233-246
-
-
Spreuer, H.1
Adams, E.2
Karlsruhe3
-
15
-
-
0013136732
-
The evolution of the stable and unstable manifold of an equilibrium point
-
Meyer K.R. The evolution of the stable and unstable manifold of an equilibrium point. Celest Mech Dyn Astron 70 (1998) 159-165
-
(1998)
Celest Mech Dyn Astron
, vol.70
, pp. 159-165
-
-
Meyer, K.R.1
-
16
-
-
0005229389
-
A numerical method for finding homoclinic orbits of Hamiltonian systems
-
Lassoued L., and Mathlouthi S. A numerical method for finding homoclinic orbits of Hamiltonian systems. Numer Funct Anal Optim 13 (1992) 155-172
-
(1992)
Numer Funct Anal Optim
, vol.13
, pp. 155-172
-
-
Lassoued, L.1
Mathlouthi, S.2
-
17
-
-
21844510897
-
Rate of convergence of numerical approximations to homoclinic bifurcation points
-
Schecter S. Rate of convergence of numerical approximations to homoclinic bifurcation points. IMA J Numer Anal 15 (1995) 23-60
-
(1995)
IMA J Numer Anal
, vol.15
, pp. 23-60
-
-
Schecter, S.1
-
19
-
-
0030405090
-
Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
-
Bai F., and Champneys A.R. Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two. Dyn Stab Syst 11 (1996) 325-346
-
(1996)
Dyn Stab Syst
, vol.11
, pp. 325-346
-
-
Bai, F.1
Champneys, A.R.2
-
20
-
-
0033196117
-
Two-dimensional global manifolds of vector fields
-
Krauskopf B., and Osinga H. Two-dimensional global manifolds of vector fields. Chaos, Solitons & Fractals 9 (1999) 768-774
-
(1999)
Chaos, Solitons & Fractals
, vol.9
, pp. 768-774
-
-
Krauskopf, B.1
Osinga, H.2
-
21
-
-
0035421660
-
Visualization and analysis of invariant sets of dynamical systems
-
Morozov A.D., and Dragunova T.N. Visualization and analysis of invariant sets of dynamical systems. Nonlin Anal Theory 47 (2001) 5285-5296
-
(2001)
Nonlin Anal Theory
, vol.47
, pp. 5285-5296
-
-
Morozov, A.D.1
Dragunova, T.N.2
|