-
1
-
-
0011545064
-
Padé Approximants I and II
-
Addison-Wesley, Reading, MA
-
Baker, G. A. Jr. and Graves-Morris, P., Padé Approximants I and II, Encyclopedia of Mathematics and Its Applications, Vols. 13 and 14, Addison-Wesley, Reading, MA, 1981.
-
(1981)
Encyclopedia of Mathematics and Its Applications
, vol.13-14
-
-
Baker Jr., G.A.1
Graves-Morris, P.2
-
2
-
-
0039060323
-
Two-point Padé approximants for formal Stieltjes series
-
Tokarzewski, S., Blawzdziewicz, J., and Andrianov, L, 'Two-point Padé approximants for formal Stieltjes series', Numerical Algorithms 8, 1994, 313-328.
-
(1994)
Numerical Algorithms
, vol.8
, pp. 313-328
-
-
Tokarzewski, S.1
Blawzdziewicz, J.2
Andrianov, L.3
-
3
-
-
0011892550
-
Two-point quasifractional approximant in physics. Truncation error
-
Martin, P. and Baker, G. A. Jr., 'Two-point quasifractional approximant in physics. Truncation error', Journal of Mathematical Physics 32(6), 1991, 1470-1477.
-
(1991)
Journal of Mathematical Physics
, vol.32
, Issue.6
, pp. 1470-1477
-
-
Martin, P.1
Baker Jr., G.A.2
-
4
-
-
0000356514
-
A proof that the Lorenz equations have a homoclinic orbit
-
Hastings, S. P. and Troy, W. C., 'A proof that the Lorenz equations have a homoclinic orbit', Journal of Differential Equations 113, 1994, 166-188.
-
(1994)
Journal of Differential Equations
, vol.113
, pp. 166-188
-
-
Hastings, S.P.1
Troy, W.C.2
-
5
-
-
5544311017
-
Existence of a homoclinic orbit of the Lorenz system by precise shooting
-
Hassard, B. and Zhang, J., 'Existence of a homoclinic orbit of the Lorenz system by precise shooting', SIAM Journal on Mathematical Analysis 25(1), 1994, 179-196.
-
(1994)
SIAM Journal on Mathematical Analysis
, vol.25
, Issue.1
, pp. 179-196
-
-
Hassard, B.1
Zhang, J.2
-
6
-
-
0030540448
-
Lorenz equations Part I: Existence and nonexistence of homoclinic orbits
-
Chen, X., 'Lorenz equations Part I: Existence and nonexistence of homoclinic orbits', SIAM Journal on Mathematical Analysis 27(4), 1996, 1057-1069.
-
(1996)
SIAM Journal on Mathematical Analysis
, vol.27
, Issue.4
, pp. 1057-1069
-
-
Chen, X.1
-
7
-
-
0027648847
-
New treatment on bifurcations of periodic solutions and homoclinic orbits at high γ in the Lorenz equations
-
Li, J. and Zhang, J., 'New treatment on bifurcations of periodic solutions and homoclinic orbits at high γ in the Lorenz equations', SIAM Journal on Applied Mathematics 53(4), 1993, 1059-1071.
-
(1993)
SIAM Journal on Applied Mathematics
, vol.53
, Issue.4
, pp. 1059-1071
-
-
Li, J.1
Zhang, J.2
-
8
-
-
0003293377
-
The Lorenz Equations: Bifurcations, Chaos and Strange Attractors
-
Springer-Verlag, New York
-
Sparrow, C., The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Applied Mathematical Sciences, Vol. 41, Springer-Verlag, New York, 1982.
-
(1982)
Applied Mathematical Sciences
, vol.41
-
-
Sparrow, C.1
-
9
-
-
0005229389
-
A numerical method for finding homoclinic orbits of Hamiltonian systems
-
Lassoued, L. and Mathlouthi, S., 'A numerical method for finding homoclinic orbits of Hamiltonian systems', Numerical Functional Analysis and Optimization 13(1-2), 1992, 155-172.
-
(1992)
Numerical Functional Analysis and Optimization
, vol.13
, Issue.1-2
, pp. 155-172
-
-
Lassoued, L.1
Mathlouthi, S.2
-
10
-
-
21844510897
-
Rate of convergence of numerical approximations to homoclinic bifurcation points
-
Schecter S., 'Rate of convergence of numerical approximations to homoclinic bifurcation points', IMA Journal of Numerical Analysis 15, 1995, 23-60.
-
(1995)
IMA Journal of Numerical Analysis
, vol.15
, pp. 23-60
-
-
Schecter, S.1
-
11
-
-
0030136339
-
A numerical toolbox for homoclinic bifurcation analysis
-
Champneys, A. R., Kuznetsov, Yu. A., and Sandstede, B., 'A numerical toolbox for homoclinic bifurcation analysis', International Journal of Bifurcation and Chaos 6(5), 1996, 867-887.
-
(1996)
International Journal of Bifurcation and Chaos
, vol.6
, Issue.5
, pp. 867-887
-
-
Champneys, A.R.1
Kuznetsov, Yu.A.2
Sandstede, B.3
-
12
-
-
0030405090
-
Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
-
Bai, F. and Champneys A. R., 'Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two', Dynamics and Stability of Systems 11(4), 1996, 325-346.
-
(1996)
Dynamics and Stability of Systems
, vol.11
, Issue.4
, pp. 325-346
-
-
Bai, F.1
Champneys, A.R.2
|