-
1
-
-
0003544583
-
-
Ojimia, I., Ed.; Wiley: New York
-
(a) Catalytic Asymmetric Synthesis; Ojimia, I., Ed.; Wiley: New York, 2000.
-
(2000)
Catalytic Asymmetric Synthesis
-
-
-
2
-
-
0004005454
-
-
Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart
-
(b) Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1995.
-
(1995)
Stereoselective Synthesis
-
-
-
4
-
-
0000458209
-
-
(d) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
-
(1993)
Chem. Rev.
, vol.93
, pp. 1307
-
-
Hoveyda, A.H.1
Evans, D.A.2
Fu, G.C.3
-
5
-
-
0004286459
-
-
Procter, G., Ed.; Oxford University Press: Oxford
-
The common observation of matching and mismatching of substrate/ reagent pairs in "double" asymmetric synthesis is a manifestation of this fundamental weakness; see: Asymmetric Synthesis; Procter, G., Ed.; Oxford University Press: Oxford, 1996.
-
(1996)
Asymmetric Synthesis
-
-
-
6
-
-
12144282291
-
-
For recent synthetic applications of 1,2-metalate rearrangements, see: (a) Jarowicki, K.; Kocienski, P. J. Synlett 2005, 167.
-
(2005)
Synlett
, pp. 167
-
-
Jarowicki, K.1
Kocienski, P.J.2
-
7
-
-
1342268985
-
-
(b) Abramovitch, A.; Varghese, J. P.; Marek, I. Org. Lett. 2004, 6, 621.
-
(2004)
Org. Lett.
, vol.6
, pp. 621
-
-
Abramovitch, A.1
Varghese, J.P.2
Marek, I.3
-
8
-
-
0037613261
-
-
(c) Pommier, A.; Stepanenko, V.; Jarowicki, K.; Kocienski, P. J. J. Org. Chem. 2003, 68, 4008.
-
(2003)
J. Org. Chem.
, vol.68
, pp. 4008
-
-
Pommier, A.1
Stepanenko, V.2
Jarowicki, K.3
Kocienski, P.J.4
-
9
-
-
0345305264
-
-
(d)Le Menez, P.; Brion, J.-D.; Lensen, N.; Chelain, E.; Pancrazi, A.; Ardisson, J. Synthesis 2003, 2530.
-
(2003)
Synthesis
, pp. 2530
-
-
Le Menez, P.1
Brion, J.-D.2
Lensen, N.3
Chelain, E.4
Pancrazi, A.5
Ardisson, J.6
-
11
-
-
0344803789
-
-
and references therein
-
(f) Sidduri, A.; Rozema, M. K.; Knochel, P. J. Org. Chem. 1993, 58, 2694 and references therein.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 2694
-
-
Sidduri, A.1
Rozema, M.K.2
Knochel, P.3
-
12
-
-
25844440993
-
-
San Diego, CA, March 13-17; Blakemore, P. R.; Vater, H. D. paper ORGN 269
-
Presented in part at the 229th ACS National Meeting, San Diego, CA, March 13-17, 2005; Blakemore, P. R.; Vater, H. D. paper ORGN 269.
-
(2005)
229th ACS National Meeting
-
-
-
14
-
-
0034665258
-
-
Hoffmann, R. W.; Nell, P. G.; Leo, R.; Harms, K. Chem. Eur. J. 2000, 6, 3359.
-
(2000)
Chem. Eur. J.
, vol.6
, pp. 3359
-
-
Hoffmann, R.W.1
Nell, P.G.2
Leo, R.3
Harms, K.4
-
15
-
-
18044403549
-
-
A stereoretentive electrophilic substitution (transmetalation) reaction between an enantioenriched secondary Grignard reagent and a borate ester has been reported, see: Hoffmann, R. W.; Hölzer, B.; Knopff, O. Org. Lett. 2001, 3, 1945.
-
(2001)
Org. Lett.
, vol.3
, pp. 1945
-
-
Hoffmann, R.W.1
Hölzer, B.2
Knopff, O.3
-
16
-
-
33644755104
-
-
note
-
2O was found to be superior to acetone (as reported by Hoffmann) for the purpose of obtaining this compound in an isomerically homogeneous form (single stereoisomer by chiral HPLC analysis after three recrystallation cycles).
-
-
-
-
17
-
-
33644763557
-
-
note
-
In each case, no deuterium was incorporated into sulfoxide 10 and the level of deuterium incorporation in 11 was 90%; % ee for 10 and 11 was not determined.
-
-
-
-
18
-
-
0038779280
-
-
% ee for epoxides cis-12 and trans-12 was determined by HPLC analysis. Hoffmann and co-workers reported 69% overall yield for a closely related transformation employing EtMgBr in place of EtMgCl and found cis:trans = 88:12 and % ee (cis-12) = 93 ±3% (see ref 6). Diastereoselectivity in this type of addition has been studied in detail; see: Schulze, V.; Nell, P. G.; Burton, A.; Hoffmann, R. W. J. Org. Chem. 2003, 68, 4546.
-
(2003)
J. Org. Chem.
, vol.68
, pp. 4546
-
-
Schulze, V.1
Nell, P.G.2
Burton, A.3
Hoffmann, R.W.4
-
19
-
-
25144445852
-
-
Satoh and co-workers have investigated many other aspects of the chemistry of α-halo Grignard species. For recent work, with leading references, see: (a) Satoh, T.; Ogino, Y.; Ando, K. Tetrahedron 2005, 61, 10262.
-
(2005)
Tetrahedron
, vol.61
, pp. 10262
-
-
Satoh, T.1
Ogino, Y.2
Ando, K.3
-
21
-
-
11144302018
-
-
(c) Satoh, T.; Musashi, J.; Kondo, A. Tetrahedron Lett. 2005, 46, 599.
-
(2005)
Tetrahedron Lett.
, vol.46
, pp. 599
-
-
Satoh, T.1
Musashi, J.2
Kondo, A.3
-
22
-
-
2542609845
-
-
(d) Satoh, T.; Kondo, A.; Musashi, J. Tetrahedron 2004, 60, 5453.
-
(2004)
Tetrahedron
, vol.60
, pp. 5453
-
-
Satoh, T.1
Kondo, A.2
Musashi, J.3
-
26
-
-
0028081123
-
-
(d) Soundararajan, R.; Li, G.; Brown, H. C. Tetrahedron Lett. 1994, 35, 8957.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 8957
-
-
Soundararajan, R.1
Li, G.2
Brown, H.C.3
-
27
-
-
0032480407
-
-
2 species (X = Cl, Br) has been extensively studied by Matteson and co-workers and constitutes an important method for substrate controlled asymmetric chain extension. For reviews, see: (a) Matteson, D. S. Tetrahedron 1998, 54, 10555.
-
(1998)
Tetrahedron
, vol.54
, pp. 10555
-
-
Matteson, D.S.1
-
30
-
-
1642502980
-
-
(d) Davoli, P.; Spaggiari, A.; Castagnetti, L.; Prati, F. Org. Biomol. Chem. 2004, 2, 38.
-
(2004)
Org. Biomol. Chem.
, vol.2
, pp. 38
-
-
Davoli, P.1
Spaggiari, A.2
Castagnetti, L.3
Prati, F.4
-
33
-
-
0035296971
-
-
α-Haloalkylmetal reagents are relatively poor nucleophiles and in many of their characteristic reactions are best considered as electrophilic species, see: Boche, G.; Lohrenz, J. C. W. Chem. Rev. 2001, 101, 697.
-
(2001)
Chem. Rev.
, vol.101
, pp. 697
-
-
Boche, G.1
Lohrenz, J.C.W.2
-
34
-
-
33644778247
-
-
note
-
2.
-
-
-
-
35
-
-
33644754458
-
-
note
-
For discussion of this topic as it relates to organolithiums, see ref 22.
-
-
-
-
36
-
-
33947085552
-
-
1H NMR analysis of its derived MTPA-ester according to Mosher's method: Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 512
-
-
Dale, J.A.1
Mosher, H.S.2
-
37
-
-
0032541271
-
-
To establish absolute configuration for ent-23, an authentic sample of its antipode was prepared by enantioselective reduction of benzyl cyclohexyl ketone with (S)-methyl-CBS-oxazaborolidine according to Corey's method: Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986. See Supporting Information for details.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 1986
-
-
Corey, E.J.1
Helal, C.J.2
-
39
-
-
37049069109
-
-
Hoffmann and co-workers have demonstrated that α-bromo- alkyllithiums are configurationally stable for short periods of time at -110 °C. See: (a) Hoffmann, R. W.; Ruhland, T.; Bewersdorf, M. J. Chem. Soc., Chem. Commun. 1991, 195.
-
(1991)
J. Chem. Soc., Chem. Commun.
, pp. 195
-
-
Hoffmann, R.W.1
Ruhland, T.2
Bewersdorf, M.3
-
41
-
-
0028287645
-
-
(c) Hoffmann, R. W.; Julius, M.; Chemla, F.; Ruhland, T.; Frenzen, G. Tetrahedron 1994, 50, 6049.
-
(1994)
Tetrahedron
, vol.50
, pp. 6049
-
-
Hoffmann, R.W.1
Julius, M.2
Chemla, F.3
Ruhland, T.4
Frenzen, G.5
-
42
-
-
0003961355
-
-
Clayden, J., Ed.; Pergamon: New York
-
For reviews concerning the configurational stability of organolithium species, see: (a) Organolithiums: Selectivity for Synthesis; Clayden, J., Ed.; Pergamon: New York, 2002.
-
(2002)
Organolithiums: Selectivity for Synthesis
-
-
-
43
-
-
0036495880
-
-
(b) Basu, A.; Thayumanavan, S. Angew. Chem., Int. Ed. 2002, 41, 716.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 716
-
-
Basu, A.1
Thayumanavan, S.2
-
44
-
-
0004050551
-
-
Kirmse, W., Ed.; Academic Press: New York
-
Carbenoid 26 presumably decomposed via β-hydrogen insertion and dimerization pathways; see: Carbene Chemistry; Kirmse, W., Ed.; Academic Press: New York, 1971.
-
(1971)
Carbene Chemistry
-
-
-
45
-
-
33644764425
-
-
note
-
The expected exchange product from this reaction, butyl p-tolyl sulfoxide, was also isolated (53% based on 8), as were phenethyl chloride (10% based on 8) and recovered chlorosulfoxide 8 (23%). The latter exhibited significant epimerization (dr (syn:anti) = 48:52), believed to be the result of deprotonation by BuLi followed by poorly diastereoselective reprotonation upon quench. Satoh and Takano reported that alkyllithium-mediated ligand exchange from sulfoxide substrates possessing acidic α-hydrogen atoms is complicated by competing deprotonation. See ref 20.
-
-
-
|