메뉴 건너뛰기




Volumn 43, Issue 3-4, 2006, Pages 433-445

Asymptotic stability for delayed logistic type equations

Author keywords

Delayed logistic equation; Delayed population model; Global asymptotic stability

Indexed keywords

DIFFERENTIAL EQUATIONS; FEEDBACK; LOGISTICS; MATHEMATICAL MODELS; NONLINEAR EQUATIONS;

EID: 33644673010     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2005.11.006     Document Type: Article
Times cited : (31)

References (25)
  • 3
    • 84941442792 scopus 로고
    • A non-linear difference-differential equation
    • E.M. Wright A non-linear difference-differential equation J. Reine Angew. Math. 194 1955 66 87
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1
  • 4
    • 0000602617 scopus 로고
    • Asymptotic stability for one dimensional delay-differential equations
    • J.A. Yorke Asymptotic stability for one dimensional delay-differential equations J. Differential Equations 7 1970 189 202
    • (1970) J. Differential Equations , vol.7 , pp. 189-202
    • Yorke, J.A.1
  • 5
    • 0002671702 scopus 로고
    • The 3/2 stability theorem for one-dimensional delay-differential equation with unbounded delay
    • T. Yoneyama The 3/2 stability theorem for one-dimensional delay-differential equation with unbounded delay J. Math. Anal. Appl. 165 1992 133 143
    • (1992) J. Math. Anal. Appl. , vol.165 , pp. 133-143
    • Yoneyama, T.1
  • 6
    • 0011638226 scopus 로고    scopus 로고
    • Global stability for a general population model with time delays
    • S. Ruan American Mathematical Society Providence, R.I.*et al.
    • J.W.-H. So, and J.S. Yu Global stability for a general population model with time delays S. Ruan Differential Equations with Applications to Biology Fields Institute Communications vol. 21 1999 American Mathematical Society Providence, R.I. 447 457
    • (1999) Differential Equations with Applications to Biology Fields Institute Communications , vol.21 , pp. 447-457
    • So, J.W.-H.1    Yu, J.S.2
  • 7
    • 15744369619 scopus 로고    scopus 로고
    • On a generalized Yorke condition for scalar delayed population models
    • T. Faria, E. Liz, J.J. Oliveira, and S. Trofimchuk On a generalized Yorke condition for scalar delayed population models Discrete Contin. Dyn. Syst. 12 3 2005 481 500
    • (2005) Discrete Contin. Dyn. Syst. , vol.12 , Issue.3 , pp. 481-500
    • Faria, T.1    Liz, E.2    Oliveira, J.J.3    Trofimchuk, S.4
  • 8
    • 38049055539 scopus 로고
    • On a delay-differential equation for single specie population variations
    • G. Seifert On a delay-differential equation for single specie population variations Nonlinear Anal. 11 1987 1051 1059
    • (1987) Nonlinear Anal. , vol.11 , pp. 1051-1059
    • Seifert, G.1
  • 9
    • 0001293981 scopus 로고
    • Global stability for infinite delay Lotka-Volterra type systems
    • Y. Kuang, and H.L. Smith Global stability for infinite delay Lotka-Volterra type systems J. Differential Equations 103 1993 221 246
    • (1993) J. Differential Equations , vol.103 , pp. 221-246
    • Kuang, Y.1    Smith, H.L.2
  • 10
    • 0034162505 scopus 로고    scopus 로고
    • A new approach to the global stability problem in a delay Lotka-Volterra differential equation
    • I. Györi A new approach to the global stability problem in a delay Lotka-Volterra differential equation Math. Comput. Modelling 31 2000 9 28
    • (2000) Math. Comput. Modelling , vol.31 , pp. 9-28
    • Györi, I.1
  • 11
    • 0344118908 scopus 로고    scopus 로고
    • Boundedness and asymptotic stability for delayed equations of logistic type
    • T. Faria, and E. Liz Boundedness and asymptotic stability for delayed equations of logistic type Proc. Roy. Soc. Edinburgh Sect. A 133 2003 1057 1073
    • (2003) Proc. Roy. Soc. Edinburgh Sect. a , vol.133 , pp. 1057-1073
    • Faria, T.1    Liz, E.2
  • 12
  • 13
    • 0002393430 scopus 로고    scopus 로고
    • Persistence and global stability in a population model
    • K. Gopalsamy, and P. Liu Persistence and global stability in a population model J. Math. Anal. Appl. 224 1998 59 80
    • (1998) J. Math. Anal. Appl. , vol.224 , pp. 59-80
    • Gopalsamy, K.1    Liu, P.2
  • 14
    • 0000497896 scopus 로고    scopus 로고
    • Global dynamics for a reaction-diffusion equation with time delay
    • W. Huang Global dynamics for a reaction-diffusion equation with time delay J. Differential Equations 143 1998 293 326
    • (1998) J. Differential Equations , vol.143 , pp. 293-326
    • Huang, W.1
  • 15
    • 33644669154 scopus 로고    scopus 로고
    • Where to put delays in population models, in particular in the neutral case
    • K.P. Hadeler, and G. Bocharov Where to put delays in population models, in particular in the neutral case Can. Appl. Math. Q. 11 2003 159 174
    • (2003) Can. Appl. Math. Q. , vol.11 , pp. 159-174
    • Hadeler, K.P.1    Bocharov, G.2
  • 16
    • 0033209987 scopus 로고    scopus 로고
    • Interaction of maturation delay and nonlinear birth in population and epidemics models
    • K. Cooke, P. van den Driessche, and X. Zou Interaction of maturation delay and nonlinear birth in population and epidemics models J. Math. Biol. 39 1999 332 352
    • (1999) J. Math. Biol. , vol.39 , pp. 332-352
    • Cooke, K.1    Van Den Driessche, P.2    Zou, X.3
  • 17
    • 0037898943 scopus 로고    scopus 로고
    • Individual-based approaches to birth and death in avascular tumors
    • D. Drasdo, and S. Höme Individual-based approaches to birth and death in avascular tumors Math. Comput. Modelling 37 2003 1163 1175
    • (2003) Math. Comput. Modelling , vol.37 , pp. 1163-1175
    • Drasdo, D.1    Höme, S.2
  • 18
    • 33947597135 scopus 로고    scopus 로고
    • Asymptotic behavior of solutions to abstract logistic equations
    • (in press)
    • J. Dyson, R. Villella-Bressan, G.F. Webb, Asymptotic behavior of solutions to abstract logistic equations, Math. Biosci. (in press)
    • Math. Biosci.
    • Dyson, J.1    Villella-Bressan, R.2    Webb, G.F.3
  • 19
    • 0020830980 scopus 로고
    • Stability conditions for linear retarded functional differential equations
    • K.L. Cooke, and J.M. Ferreira Stability conditions for linear retarded functional differential equations J. Math. Anal. Appl. 96 1983 480 504
    • (1983) J. Math. Anal. Appl. , vol.96 , pp. 480-504
    • Cooke, K.L.1    Ferreira, J.M.2
  • 21
    • 84968497717 scopus 로고
    • Global stability of a biological model with time delay
    • S.M. Lenhart, and C.C. Travis Global stability of a biological model with time delay Proc. Amer. Math. Soc. 96 1986 75 78
    • (1986) Proc. Amer. Math. Soc. , vol.96 , pp. 75-78
    • Lenhart, S.M.1    Travis, C.C.2
  • 22
    • 0010700917 scopus 로고
    • On Volterra's population equation
    • R.K. Miller On Volterra's population equation SIAM J. Appl. Math. 14 1966 446 452
    • (1966) SIAM J. Appl. Math. , vol.14 , pp. 446-452
    • Miller, R.K.1
  • 23
    • 0006535085 scopus 로고
    • Stability of functional partial differential equations
    • S.M. Lenhart, and C.C. Travis Stability of functional partial differential equations J. Differential Equations 58 1985 212 227
    • (1985) J. Differential Equations , vol.58 , pp. 212-227
    • Lenhart, S.M.1    Travis, C.C.2
  • 25
    • 0000103184 scopus 로고    scopus 로고
    • Global attractivity in x′(t)=-δx(t)+pf(x(t-τ))
    • I. Györi, and S. Trofimchuk Global attractivity in x ′ (t ) = - δ x (t ) + p f (x (t - τ ) ) Dynam. Systems Appl. 8 1999 197 210
    • (1999) Dynam. Systems Appl. , vol.8 , pp. 197-210
    • Györi, I.1    Trofimchuk, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.