-
3
-
-
84941442792
-
A non-linear difference-differential equation
-
E.M. Wright A non-linear difference-differential equation J. Reine Angew. Math. 194 1955 66 87
-
(1955)
J. Reine Angew. Math.
, vol.194
, pp. 66-87
-
-
Wright, E.M.1
-
4
-
-
0000602617
-
Asymptotic stability for one dimensional delay-differential equations
-
J.A. Yorke Asymptotic stability for one dimensional delay-differential equations J. Differential Equations 7 1970 189 202
-
(1970)
J. Differential Equations
, vol.7
, pp. 189-202
-
-
Yorke, J.A.1
-
5
-
-
0002671702
-
The 3/2 stability theorem for one-dimensional delay-differential equation with unbounded delay
-
T. Yoneyama The 3/2 stability theorem for one-dimensional delay-differential equation with unbounded delay J. Math. Anal. Appl. 165 1992 133 143
-
(1992)
J. Math. Anal. Appl.
, vol.165
, pp. 133-143
-
-
Yoneyama, T.1
-
6
-
-
0011638226
-
Global stability for a general population model with time delays
-
S. Ruan American Mathematical Society Providence, R.I.*et al.
-
J.W.-H. So, and J.S. Yu Global stability for a general population model with time delays S. Ruan Differential Equations with Applications to Biology Fields Institute Communications vol. 21 1999 American Mathematical Society Providence, R.I. 447 457
-
(1999)
Differential Equations with Applications to Biology Fields Institute Communications
, vol.21
, pp. 447-457
-
-
So, J.W.-H.1
Yu, J.S.2
-
7
-
-
15744369619
-
On a generalized Yorke condition for scalar delayed population models
-
T. Faria, E. Liz, J.J. Oliveira, and S. Trofimchuk On a generalized Yorke condition for scalar delayed population models Discrete Contin. Dyn. Syst. 12 3 2005 481 500
-
(2005)
Discrete Contin. Dyn. Syst.
, vol.12
, Issue.3
, pp. 481-500
-
-
Faria, T.1
Liz, E.2
Oliveira, J.J.3
Trofimchuk, S.4
-
8
-
-
38049055539
-
On a delay-differential equation for single specie population variations
-
G. Seifert On a delay-differential equation for single specie population variations Nonlinear Anal. 11 1987 1051 1059
-
(1987)
Nonlinear Anal.
, vol.11
, pp. 1051-1059
-
-
Seifert, G.1
-
9
-
-
0001293981
-
Global stability for infinite delay Lotka-Volterra type systems
-
Y. Kuang, and H.L. Smith Global stability for infinite delay Lotka-Volterra type systems J. Differential Equations 103 1993 221 246
-
(1993)
J. Differential Equations
, vol.103
, pp. 221-246
-
-
Kuang, Y.1
Smith, H.L.2
-
10
-
-
0034162505
-
A new approach to the global stability problem in a delay Lotka-Volterra differential equation
-
I. Györi A new approach to the global stability problem in a delay Lotka-Volterra differential equation Math. Comput. Modelling 31 2000 9 28
-
(2000)
Math. Comput. Modelling
, vol.31
, pp. 9-28
-
-
Györi, I.1
-
11
-
-
0344118908
-
Boundedness and asymptotic stability for delayed equations of logistic type
-
T. Faria, and E. Liz Boundedness and asymptotic stability for delayed equations of logistic type Proc. Roy. Soc. Edinburgh Sect. A 133 2003 1057 1073
-
(2003)
Proc. Roy. Soc. Edinburgh Sect. a
, vol.133
, pp. 1057-1073
-
-
Faria, T.1
Liz, E.2
-
13
-
-
0002393430
-
Persistence and global stability in a population model
-
K. Gopalsamy, and P. Liu Persistence and global stability in a population model J. Math. Anal. Appl. 224 1998 59 80
-
(1998)
J. Math. Anal. Appl.
, vol.224
, pp. 59-80
-
-
Gopalsamy, K.1
Liu, P.2
-
14
-
-
0000497896
-
Global dynamics for a reaction-diffusion equation with time delay
-
W. Huang Global dynamics for a reaction-diffusion equation with time delay J. Differential Equations 143 1998 293 326
-
(1998)
J. Differential Equations
, vol.143
, pp. 293-326
-
-
Huang, W.1
-
15
-
-
33644669154
-
Where to put delays in population models, in particular in the neutral case
-
K.P. Hadeler, and G. Bocharov Where to put delays in population models, in particular in the neutral case Can. Appl. Math. Q. 11 2003 159 174
-
(2003)
Can. Appl. Math. Q.
, vol.11
, pp. 159-174
-
-
Hadeler, K.P.1
Bocharov, G.2
-
16
-
-
0033209987
-
Interaction of maturation delay and nonlinear birth in population and epidemics models
-
K. Cooke, P. van den Driessche, and X. Zou Interaction of maturation delay and nonlinear birth in population and epidemics models J. Math. Biol. 39 1999 332 352
-
(1999)
J. Math. Biol.
, vol.39
, pp. 332-352
-
-
Cooke, K.1
Van Den Driessche, P.2
Zou, X.3
-
17
-
-
0037898943
-
Individual-based approaches to birth and death in avascular tumors
-
D. Drasdo, and S. Höme Individual-based approaches to birth and death in avascular tumors Math. Comput. Modelling 37 2003 1163 1175
-
(2003)
Math. Comput. Modelling
, vol.37
, pp. 1163-1175
-
-
Drasdo, D.1
Höme, S.2
-
18
-
-
33947597135
-
Asymptotic behavior of solutions to abstract logistic equations
-
(in press)
-
J. Dyson, R. Villella-Bressan, G.F. Webb, Asymptotic behavior of solutions to abstract logistic equations, Math. Biosci. (in press)
-
Math. Biosci.
-
-
Dyson, J.1
Villella-Bressan, R.2
Webb, G.F.3
-
19
-
-
0020830980
-
Stability conditions for linear retarded functional differential equations
-
K.L. Cooke, and J.M. Ferreira Stability conditions for linear retarded functional differential equations J. Math. Anal. Appl. 96 1983 480 504
-
(1983)
J. Math. Anal. Appl.
, vol.96
, pp. 480-504
-
-
Cooke, K.L.1
Ferreira, J.M.2
-
21
-
-
84968497717
-
Global stability of a biological model with time delay
-
S.M. Lenhart, and C.C. Travis Global stability of a biological model with time delay Proc. Amer. Math. Soc. 96 1986 75 78
-
(1986)
Proc. Amer. Math. Soc.
, vol.96
, pp. 75-78
-
-
Lenhart, S.M.1
Travis, C.C.2
-
22
-
-
0010700917
-
On Volterra's population equation
-
R.K. Miller On Volterra's population equation SIAM J. Appl. Math. 14 1966 446 452
-
(1966)
SIAM J. Appl. Math.
, vol.14
, pp. 446-452
-
-
Miller, R.K.1
-
23
-
-
0006535085
-
Stability of functional partial differential equations
-
S.M. Lenhart, and C.C. Travis Stability of functional partial differential equations J. Differential Equations 58 1985 212 227
-
(1985)
J. Differential Equations
, vol.58
, pp. 212-227
-
-
Lenhart, S.M.1
Travis, C.C.2
-
25
-
-
0000103184
-
Global attractivity in x′(t)=-δx(t)+pf(x(t-τ))
-
I. Györi, and S. Trofimchuk Global attractivity in x ′ (t ) = - δ x (t ) + p f (x (t - τ ) ) Dynam. Systems Appl. 8 1999 197 210
-
(1999)
Dynam. Systems Appl.
, vol.8
, pp. 197-210
-
-
Györi, I.1
Trofimchuk, S.2
|