메뉴 건너뛰기




Volumn 133, Issue 5, 2003, Pages 1057-1073

Boundedness and asymptotic stability for delayed equations of logistic type

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0344118908     PISSN: 03082105     EISSN: None     Source Type: Journal    
DOI: 10.1017/s030821050000281x     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 1
    • 0000855614 scopus 로고
    • On the stability of a delay differential population model
    • M. P. Chen, J. S. Yu, X. Z. Qian and Z. C. Wang. On the stability of a delay differential population model. Nonlin. Analysis 25 (1995), 187-195.
    • (1995) Nonlin. Analysis , vol.25 , pp. 187-195
    • Chen, M.P.1    Yu, J.S.2    Qian, X.Z.3    Wang, Z.C.4
  • 3
    • 0034162505 scopus 로고    scopus 로고
    • A new approach to the global stability problem in a delay Lotka-Volterra differential equation
    • I. Györi. A new approach to the global stability problem in a delay Lotka-Volterra differential equation. Math. Comput. Modelling 31 (2000), 9-28.
    • (2000) Math. Comput. Modelling , vol.31 , pp. 9-28
    • Györi, I.1
  • 4
    • 0039812052 scopus 로고
    • Asymptotic theory for a class of nonautonomous delay differential equations
    • J. R. Haddock and Y. Kuang. Asymptotic theory for a class of nonautonomous delay differential equations. J. Math. Analysis Applic. 168 (1992), 147-162.
    • (1992) J. Math. Analysis Applic. , vol.168 , pp. 147-162
    • Haddock, J.R.1    Kuang, Y.2
  • 5
    • 0000322377 scopus 로고
    • Global stability for a class of nonlinear nonautonomous delay equations
    • Y. Kuang. Global stability for a class of nonlinear nonautonomous delay equations. Nonlin. Analysis 17 (1991), 627-634.
    • (1991) Nonlin. Analysis , vol.17 , pp. 627-634
    • Kuang, Y.1
  • 7
    • 0001293981 scopus 로고
    • Global stability for infinite delay Lotka-Volterra type systems
    • Y. Kuang and H. L. Smith. Global stability for infinite delay Lotka-Volterra type systems. J. Diff. Eqns 103 (1993), 221-246.
    • (1993) J. Diff. Eqns , vol.103 , pp. 221-246
    • Kuang, Y.1    Smith, H.L.2
  • 8
    • 84968497717 scopus 로고
    • Global stability of a biological model with time delay
    • S. M. Lenhart and C. C. Travis. Global stability of a biological model with time delay. Proc. Am. Math. Soc. 96 (1986), 75-78.
    • (1986) Proc. Am. Math. Soc. , vol.96 , pp. 75-78
    • Lenhart, S.M.1    Travis, C.C.2
  • 9
    • 0010700917 scopus 로고
    • On Volterra's population equation
    • R. K. Miller. On Volterra's population equation. SIAM J. Appl. Math. 14 (1966), 446-452.
    • (1966) SIAM J. Appl. Math. , vol.14 , pp. 446-452
    • Miller, R.K.1
  • 10
    • 38049055539 scopus 로고
    • On a delay-differential equation for single specie population variations
    • G. Seifert. On a delay-differential equation for single specie population variations. Nonlin. Analysis 11 (1987), 1051-1059.
    • (1987) Nonlin. Analysis , vol.11 , pp. 1051-1059
    • Seifert, G.1
  • 11
    • 0001711224 scopus 로고
    • Global attractivity for a population model with time delay
    • J. W.-H. So and J. S. Yu. Global attractivity for a population model with time delay. Proc. Am. Math. Soc. 123 (1995), 2687-2694.
    • (1995) Proc. Am. Math. Soc. , vol.123 , pp. 2687-2694
    • So, J.W.-H.1    Yu, J.S.2
  • 12
    • 0011638226 scopus 로고    scopus 로고
    • Global stability for a general population model with time delays
    • J. W.-H. So and J. S. Yu. Global stability for a general population model with time delays. Fields Inst. Commun. 21 (1999), 447-457.
    • (1999) Fields Inst. Commun. , vol.21 , pp. 447-457
    • So, J.W.-H.1    Yu, J.S.2
  • 13
    • 0024337215 scopus 로고
    • A nonautonomous model of population growth
    • R. R. Vance and E. A. Coddington. A nonautonomous model of population growth. J. Math. Biol. 27 (1989), 491-506.
    • (1989) J. Math. Biol. , vol.27 , pp. 491-506
    • Vance, R.R.1    Coddington, E.A.2
  • 14
    • 84941442792 scopus 로고
    • A non-linear difference-differential equation
    • E. M. Wright. A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955), 66-87.
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.