-
1
-
-
0000855614
-
On the stability of a delay differential population model
-
M. P. Chen, J. S. Yu, X. Z. Qian and Z. C. Wang. On the stability of a delay differential population model. Nonlin. Analysis 25 (1995), 187-195.
-
(1995)
Nonlin. Analysis
, vol.25
, pp. 187-195
-
-
Chen, M.P.1
Yu, J.S.2
Qian, X.Z.3
Wang, Z.C.4
-
3
-
-
0034162505
-
A new approach to the global stability problem in a delay Lotka-Volterra differential equation
-
I. Györi. A new approach to the global stability problem in a delay Lotka-Volterra differential equation. Math. Comput. Modelling 31 (2000), 9-28.
-
(2000)
Math. Comput. Modelling
, vol.31
, pp. 9-28
-
-
Györi, I.1
-
4
-
-
0039812052
-
Asymptotic theory for a class of nonautonomous delay differential equations
-
J. R. Haddock and Y. Kuang. Asymptotic theory for a class of nonautonomous delay differential equations. J. Math. Analysis Applic. 168 (1992), 147-162.
-
(1992)
J. Math. Analysis Applic.
, vol.168
, pp. 147-162
-
-
Haddock, J.R.1
Kuang, Y.2
-
5
-
-
0000322377
-
Global stability for a class of nonlinear nonautonomous delay equations
-
Y. Kuang. Global stability for a class of nonlinear nonautonomous delay equations. Nonlin. Analysis 17 (1991), 627-634.
-
(1991)
Nonlin. Analysis
, vol.17
, pp. 627-634
-
-
Kuang, Y.1
-
7
-
-
0001293981
-
Global stability for infinite delay Lotka-Volterra type systems
-
Y. Kuang and H. L. Smith. Global stability for infinite delay Lotka-Volterra type systems. J. Diff. Eqns 103 (1993), 221-246.
-
(1993)
J. Diff. Eqns
, vol.103
, pp. 221-246
-
-
Kuang, Y.1
Smith, H.L.2
-
8
-
-
84968497717
-
Global stability of a biological model with time delay
-
S. M. Lenhart and C. C. Travis. Global stability of a biological model with time delay. Proc. Am. Math. Soc. 96 (1986), 75-78.
-
(1986)
Proc. Am. Math. Soc.
, vol.96
, pp. 75-78
-
-
Lenhart, S.M.1
Travis, C.C.2
-
9
-
-
0010700917
-
On Volterra's population equation
-
R. K. Miller. On Volterra's population equation. SIAM J. Appl. Math. 14 (1966), 446-452.
-
(1966)
SIAM J. Appl. Math.
, vol.14
, pp. 446-452
-
-
Miller, R.K.1
-
10
-
-
38049055539
-
On a delay-differential equation for single specie population variations
-
G. Seifert. On a delay-differential equation for single specie population variations. Nonlin. Analysis 11 (1987), 1051-1059.
-
(1987)
Nonlin. Analysis
, vol.11
, pp. 1051-1059
-
-
Seifert, G.1
-
11
-
-
0001711224
-
Global attractivity for a population model with time delay
-
J. W.-H. So and J. S. Yu. Global attractivity for a population model with time delay. Proc. Am. Math. Soc. 123 (1995), 2687-2694.
-
(1995)
Proc. Am. Math. Soc.
, vol.123
, pp. 2687-2694
-
-
So, J.W.-H.1
Yu, J.S.2
-
12
-
-
0011638226
-
Global stability for a general population model with time delays
-
J. W.-H. So and J. S. Yu. Global stability for a general population model with time delays. Fields Inst. Commun. 21 (1999), 447-457.
-
(1999)
Fields Inst. Commun.
, vol.21
, pp. 447-457
-
-
So, J.W.-H.1
Yu, J.S.2
-
13
-
-
0024337215
-
A nonautonomous model of population growth
-
R. R. Vance and E. A. Coddington. A nonautonomous model of population growth. J. Math. Biol. 27 (1989), 491-506.
-
(1989)
J. Math. Biol.
, vol.27
, pp. 491-506
-
-
Vance, R.R.1
Coddington, E.A.2
-
14
-
-
84941442792
-
A non-linear difference-differential equation
-
E. M. Wright. A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955), 66-87.
-
(1955)
J. Reine Angew. Math.
, vol.194
, pp. 66-87
-
-
Wright, E.M.1
|