-
1
-
-
0017014016
-
Fixed point equations and nonlinear eigenvalue problems in ordered Banach space
-
Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach space. SIAM Rev. 18:1976;620-709.
-
(1976)
SIAM Rev
, vol.18
, pp. 620-709
-
-
Amann, H.1
-
2
-
-
0029704003
-
Stability and Hopf bifurcation for a population delay model with diffusion effects
-
Busenberg S., Huang W. Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differential Equations. 124:1996;80-107.
-
(1996)
J. Differential Equations
, vol.124
, pp. 80-107
-
-
Busenberg, S.1
Huang, W.2
-
4
-
-
0003268810
-
A theorem of George Seifert and an equation with state-dependent delay
-
Singapore: World Scientific. p. 65-77
-
Cooke K. L., Huang W. A theorem of George Seifert and an equation with state-dependent delay. Delay and Differential Equations. 1992;World Scientific, Singapore. p. 65-77.
-
(1992)
Delay and Differential Equations
-
-
Cooke, K.L.1
Huang, W.2
-
5
-
-
0003196710
-
Integrodifferential Equations and Delay Models in Population Dynamics
-
Berlin/New York: Springer-Verlag
-
Cushing J. M. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics. 20:1977;Springer-Verlag, Berlin/New York.
-
(1977)
Lecture Notes in Biomathematics
, vol.20
-
-
Cushing, J.M.1
-
6
-
-
0003107222
-
Semilinear functional differential equations in Banach space
-
Fitzgibbon W. E. Semilinear functional differential equations in Banach space. J. Differential Equations. 29:1978;1-14.
-
(1978)
J. Differential Equations
, vol.29
, pp. 1-14
-
-
Fitzgibbon, W.E.1
-
8
-
-
38249012325
-
Exponentially growing solutions for a delay-diffusion equation with negative feedback
-
Friesecke G. Exponentially growing solutions for a delay-diffusion equation with negative feedback. J. Differential Equations. 98:1992;1-18.
-
(1992)
J. Differential Equations
, vol.98
, pp. 1-18
-
-
Friesecke, G.1
-
9
-
-
0002257093
-
Convergence to equilibrium for delay-diffusion equations with small delay
-
Friesecke G. Convergence to equilibrium for delay-diffusion equations with small delay. J. Dynamic. Differential Equations. 5:1993;89-103.
-
(1993)
J. Dynamic. Differential Equations
, vol.5
, pp. 89-103
-
-
Friesecke, G.1
-
12
-
-
0003293929
-
Asymptotic Behavior of Dissipative Systems
-
Providence: Amer. Math. Soc.
-
Hale Jack K. Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs. 25:1988;Amer. Math. Soc. Providence.
-
(1988)
Mathematical Surveys and Monographs
, vol.25
-
-
Hale Jack, K.1
-
14
-
-
84972506384
-
Global stability in diffusive delay Lotka-Volterra systems
-
Kuang Y., Smith H. L. Global stability in diffusive delay Lotka-Volterra systems. Differential Integral Equations. 4:1991;117-128.
-
(1991)
Differential Integral Equations
, vol.4
, pp. 117-128
-
-
Kuang, Y.1
Smith, H.L.2
-
15
-
-
0001197579
-
Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks
-
Kuang Y., Smith H. L. Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks. J. Austral. Math. Soc. Ser. B. 1991.
-
(1991)
J. Austral. Math. Soc. Ser. B
-
-
Kuang, Y.1
Smith, H.L.2
-
16
-
-
84968497717
-
Global stability of a biological model with time delay
-
Lenhart S. M., Travis C. C. Global stability of a biological model with time delay. Proc. Amer. Math. Soc. 96:1986;75-78.
-
(1986)
Proc. Amer. Math. Soc.
, vol.96
, pp. 75-78
-
-
Lenhart, S.M.1
Travis, C.C.2
-
17
-
-
0001591165
-
Global boundedness for a delay-differential equation
-
Luckhaus S. Global boundedness for a delay-differential equation. Trans. Amer. Math. Soc. 294:1986;767-774.
-
(1986)
Trans. Amer. Math. Soc.
, vol.294
, pp. 767-774
-
-
Luckhaus, S.1
-
18
-
-
84966246501
-
Abstract functional differential equations and reaction-diffusion systems
-
Martin R. H. Jr., Smith H. L. Abstract functional differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc. 321:1990;1-44.
-
(1990)
Trans. Amer. Math. Soc.
, vol.321
, pp. 1-44
-
-
Martin R.H., Jr.1
Smith, H.L.2
-
19
-
-
0001223745
-
Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion
-
Memory M. C. Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion. SIAM J. Math. Anal. 20:1989;533-546.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 533-546
-
-
Memory, M.C.1
-
20
-
-
0010700917
-
On Volterra's population equation
-
Miller R. On Volterra's population equation. SIAM J. Appl. Math. 14:1996;446-452.
-
(1996)
SIAM J. Appl. Math.
, vol.14
, pp. 446-452
-
-
Miller, R.1
-
21
-
-
0011624833
-
Destabilization of periodic solutions arising in delay-diffusion systems in several space dimensions
-
Morita Y. Destabilization of periodic solutions arising in delay-diffusion systems in several space dimensions. Jpn. J. Appl. Math. 1:1984;39-65.
-
(1984)
Jpn. J. Appl. Math.
, vol.1
, pp. 39-65
-
-
Morita, Y.1
-
23
-
-
0000160043
-
Linearized stability and irreducibility for a functional differential equation
-
Parrot M. E. Linearized stability and irreducibility for a functional differential equation. SIAM J. Math. Anal. 23:1992;649-661.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 649-661
-
-
Parrot, M.E.1
-
26
-
-
38049055539
-
On a delay-differential equation for single specie population variations
-
Seifert G. On a delay-differential equation for single specie population variations. Nonlinear Anal. 11:1987;1051-1059.
-
(1987)
Nonlinear Anal.
, vol.11
, pp. 1051-1059
-
-
Seifert, G.1
-
27
-
-
84968492827
-
Existence and stability for partial functional differential equations
-
Travis C. C., Webb G. F. Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200:1974;395-418.
-
(1974)
Trans. Amer. Math. Soc.
, vol.200
, pp. 395-418
-
-
Travis, C.C.1
Webb, G.F.2
-
28
-
-
84972506868
-
The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology
-
Yoshida K. The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12:1982;321-348.
-
(1982)
Hiroshima Math. J.
, vol.12
, pp. 321-348
-
-
Yoshida, K.1
|