-
1
-
-
0038036202
-
-
report no. 47, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland, chap. 4
-
M. P. Chipperfield et al., in Scientific Assessment of Ozone Depletion: 2002 (report no. 47, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland, 2003), chap. 4.
-
(2003)
Scientific Assessment of Ozone Depletion: 2002
-
-
Chipperfield, M.P.1
-
5
-
-
24644486491
-
-
B. D. Santer et al., Science 309, 1551 (2005).
-
(2005)
Science
, vol.309
, pp. 1551
-
-
Santer, B.D.1
-
6
-
-
0038712773
-
-
10.1029/2002JD002069
-
U. Langematz, M. Kunze, K. Krueger, K. Labitzke, G. L. Roff, J. Geophys. Res. 108, 10.1029/2002JD002069 (2002).
-
(2002)
J. Geophys. Res.
, vol.108
-
-
Langematz, U.1
Kunze, M.2
Krueger, K.3
Labitzke, K.4
Roff, G.L.5
-
9
-
-
0042867240
-
-
B. D. Santer et al., Science 301, 479 (2003).
-
(2003)
Science
, vol.301
, pp. 479
-
-
Santer, B.D.1
-
10
-
-
33646500082
-
-
10.1029/2001JD001143
-
J. E. Hansen et al., J. Geophys. Res. 107, 10.1029/2001JD001143 (2002).
-
(2002)
J. Geophys. Res.
, vol.107
-
-
Hansen, J.E.1
-
11
-
-
33644520530
-
-
note
-
The Geophysical Fluid Dynamics Laboratory coupled atmosphere-ocean model CM2.1 (12) is used to investigate the responses to natural and anthropogenic forcings. The atmospheric component of the model has 2°-by-2.5° latitude-longitude resolution and 24 vertical levels, with 5 in the stratosphere; the top is at 40 km. The horizontal resolution of the ocean component of the model is 1°, with the latitudinal spacing reducing to 1/3° near the equator; there are 50 vertical levels.
-
-
-
-
14
-
-
84889967540
-
-
J. Lean, G. Rottman, J. Harder, G. Kopp, Solar Phys. 203, 27 (2005).
-
(2005)
Solar Phys.
, vol.203
, pp. 27
-
-
Lean, J.1
Rottman, G.2
Harder, J.3
Kopp, G.4
-
16
-
-
33644510062
-
-
note
-
The observed temporal evolution of the well-mixed greenhouse gases (carbon dioxide, methane, nitrous oxide, and halocarbons) is employed in the model [(13) see the supporting online material (SOM)] in a manner similar to that of (33).
-
-
-
-
17
-
-
33644541051
-
-
note
-
Zonally and monthly averaged concentrations of stratospheric ozone are based directly on observations involving a combination of satellite and polar ozonesonde measurements [(25, 26) see SOM]. A standard regression analysis of the data over the period is performed, comprising terms that represent solar variations and QBO influences, along with a function representing the stratospheric ozone loss trend based on the time series of the equivalent effective stratospheric chlorine (26). In view of the dominant influence of the halogen-induced depletion in the lower stratosphere over the period, stratospheric ozone change is taken to be part of the anthropogenic forcing.
-
-
-
-
18
-
-
33644499422
-
-
note
-
Spatial distribution and temporal variations of tropospheric short-lived species (ozone and aerosols) are simulated by a global chemistry-transport model [(34, 35) see SOM]. The vertical profiles of tropospheric and stratospheric ozone distributions are smoothly merged at the tropopause. Tropospheric aerosol species consist of dust, sea salt, black and organic carbon, and sulfate, with the respective optical properties taken from (36); dust and sea salt are presumed to be unaffected by anthropogenic activity.
-
-
-
-
20
-
-
0033076061
-
-
W. J. Randel, F. Wu, R. Swinbank, J. Nash, A. O'Neill, J. Atmos. Sci. 56, 457 (1999).
-
(1999)
J. Atmos. Sci.
, vol.56
, pp. 457
-
-
Randel, W.J.1
Wu, F.2
Swinbank, R.3
Nash, J.4
O'Neill, A.5
-
22
-
-
33644559315
-
-
note
-
Although the increase in tropospheric ozone over the period reduces the radiative flux convergence and thus also yields a general cooling in the lower stratosphere, its contribution is substantially less than that due to stratospheric ozone loss (37).
-
-
-
-
23
-
-
33644517172
-
-
in preparation
-
P. Ginoux et al., in preparation.
-
-
-
Ginoux, P.1
-
24
-
-
1642333216
-
-
10.1029/2003JD003812
-
A. J. Broccoli et al., J. Geophys. Res. 108, 10.1029/2003JD003812 (2003).
-
(2003)
J. Geophys. Res.
, vol.108
-
-
Broccoli, A.J.1
-
26
-
-
33644540128
-
-
in preparation
-
W. J. Randel et al., in preparation.
-
-
-
Randel, W.J.1
-
31
-
-
4844222789
-
-
W. J. Randel, F. Wu, S. J. Oltmans, K. Rosenlof, G. E. Nedoluha, J. Atmos. Sci. 61, 2133 (2004).
-
(2004)
J. Atmos. Sci.
, vol.61
, pp. 2133
-
-
Randel, W.J.1
Wu, F.2
Oltmans, S.J.3
Rosenlof, K.4
Nedoluha, G.E.5
-
32
-
-
36448993338
-
-
10.1029/2002JD002090
-
G. Stenchikov et al., J. Geophys. Res. 107, 10.1029/2002JD002090 (2002).
-
(2002)
J. Geophys. Res.
, vol.107
-
-
Stenchikov, G.1
-
33
-
-
0002155033
-
-
J. T. Houghton et al., Eds. Cambridge Univ. Press, Cambridge
-
V. Ramaswamy et al., in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds. (Cambridge Univ. Press, Cambridge, 2001), pp. 349-416.
-
(2001)
Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change
, pp. 349-416
-
-
Ramaswamy, V.1
-
34
-
-
1642335606
-
-
10.1029/2002JD002853
-
L. W. Horowitz et al., J. Geophys. Res. 108, 10.1029/2002JD002853 (2003).
-
(2003)
J. Geophys. Res.
, vol.108
-
-
Horowitz, L.W.1
-
35
-
-
17344363397
-
-
10.1029/2004JD005359
-
X. Tie et al., J. Geophys. Res. 110, 10.1029/2004JD005359 (2005).
-
(2005)
J. Geophys. Res.
, vol.110
-
-
Tie, X.1
-
38
-
-
33644514592
-
-
note
-
The authors acknowledge J. Lean for the solar irradiance data set (including updates) and assistance in understanding the solar forcing. E. Dlugokencky is acknowledged for the update in the estimates of the observed well-mixed greenhouse gas concentrations. Comments by two reviewers are greatly appreciated.
-
-
-
|