메뉴 건너뛰기




Volumn 309, Issue 5740, 2005, Pages 1551-1556

Atmospheric science: Amplification of surface temperature trends and variability in the tropical atmosphere

(25)  Santer, B D a   Wigley, T M L b   Mears, C c   Wentz, F J c   Klein, S A a   Seidel, D J d   Taylor, K E a   Thorne, P W e   Wehner, M F f   Gleckler, P J a   Boyle, J S a   Collins, W D b   Dixon, K W g   Doutriaux, C a   Free, M d   Fu, Q h   Hansen, J E i   Jones, C S e   Ruedy, R i   Karl, T R j   more..


Author keywords

[No Author keywords available]

Indexed keywords

AMPLIFICATION; CLIMATOLOGY; COMPUTER SIMULATION; DATA REDUCTION; GLOBAL WARMING; TROPICS; TROPOSPHERE;

EID: 24644486491     PISSN: 00368075     EISSN: 10959203     Source Type: Journal    
DOI: 10.1126/science.1114867     Document Type: Article
Times cited : (258)

References (37)
  • 1
    • 0029663322 scopus 로고    scopus 로고
    • B. D. Santer et al., Nature 382, 39 (1996).
    • (1996) Nature , vol.382 , pp. 39
    • Santer, B.D.1
  • 2
    • 33646500082 scopus 로고    scopus 로고
    • ACL-2, 10.1029/2001JD001143
    • J. E. Hansen et al., J. Geophys. Res. 107, ACL-2, 10.1029/2001JD001143 (2002).
    • (2002) J. Geophys. Res. , vol.107
    • Hansen, J.E.1
  • 3
    • 0037662417 scopus 로고    scopus 로고
    • 10.1029/2000JD000028
    • S. F. B. Tett et al., J. Geophys. Res. 107, 10.1029/2000JD000028 (2002).
    • (2002) J. Geophys. Res. , vol.107
    • Tett, S.F.B.1
  • 5
    • 2942629670 scopus 로고    scopus 로고
    • D. J. Seidel et al., J. Clim. 17, 2225 (2004).
    • (2004) J. Clim. , vol.17 , pp. 2225
    • Seidel, D.J.1
  • 9
    • 0034681552 scopus 로고    scopus 로고
    • B. D. Santer et al., Science 287, 1227 (2000).
    • (2000) Science , vol.287 , pp. 1227
    • Santer, B.D.1
  • 10
    • 0034681553 scopus 로고    scopus 로고
    • D. J. Gaffen et al., Science 287, 1242 (2000).
    • (2000) Science , vol.287 , pp. 1242
    • Gaffen, D.J.1
  • 14
    • 24644467695 scopus 로고    scopus 로고
    • published online 11 August 2005 (10.1126/science. 1114772)
    • C. A. Wears, F. J. Wentz, Science 309, 1548 (2005); published online 11 August 2005 (10.1126/science. 1114772).
    • (2005) Science , vol.309 , pp. 1548
    • Wears, C.A.1    Wentz, F.J.2
  • 16
    • 0038136889 scopus 로고    scopus 로고
    • B. D. Santer et al., Science 300, 1280 (2003).
    • (2003) Science , vol.300 , pp. 1280
    • Santer, B.D.1
  • 18
    • 24644515835 scopus 로고    scopus 로고
    • published online 11 August 2005 (10.1126/science.1115640)
    • S. C. Sherwood, J. R. Lanzante, C. L. Meyer, Science 309, 1556 (2005); published online 11 August 2005 (10.1126/science.1115640).
    • (2005) Science , vol.309 , pp. 1556
    • Sherwood, S.C.1    Lanzante, J.R.2    Meyer, C.L.3
  • 24
    • 24644442512 scopus 로고    scopus 로고
    • note
    • Whereas all 19 modeling groups used very similar changes in well-mixed greenhouse gases, the changes in other forcings were not prescribed as part of the experimental design. In practice, each group applied different combinations of 20th century forcings and often used different data sets for specifying individual forcings. End dates for the experiment varied between groups and ranged from 1999 to 2003. Some modeling centers performed ensembles of the historical forcing simulation (25). An ensemble contains multiple realizations of the same experiment, each initiated from slightly different initial conditions, but with identical changes in external forcings (2). This yields many different realizations of the climate "signal" (the response to the imposed forcing changes) plus climate noise. Averaging over multiple realizations reduces noise and facilitates signal estimation.
  • 25
    • 24644471295 scopus 로고    scopus 로고
    • note
    • Materials and methods are available as supporting material on Science Online.
  • 29
    • 24644474412 scopus 로고    scopus 로고
    • note
    • HadCRUT2v is the designation for version 2 of the (variance-corrected) Hadley Centre/Climatic Research Unit surface temperature data set.
  • 32
    • 85112126549 scopus 로고    scopus 로고
    • note
    • j is the ensemble mean signal of the jth model. This weighting avoids undue emphasis on results from a single model with a large number of realizations.
  • 33
    • 85112126652 scopus 로고    scopus 로고
    • note
    • NIÑO-3.4) (correlation coefficient r = 0.92).
  • 34
    • 24644493810 scopus 로고    scopus 로고
    • note
    • The theoretical expectation plotted in Fig. 3 was computed by taking the difference of two pseudo-adiabats calculated from surface air parcels with temperatures of 28.0° and 28.2°C and 80% relative humidity. These are conditions typical of deep convective regions over the tropical oceans. The pseudo-adiabats correspond to equivalent potential temperatures of 353.2 and 354.1 K. The assumed temperature difference of 0.2°C corresponds approximately to the total change in tropical ocean temperature over the years 1979 to 1999. Theoretical scaling ratios are relatively insensitive to reasonable variations in the baseline values of surface air temperature and relative humidity, as well as to the magnitude of the surface air temperature increase.
  • 35
    • 0002155033 scopus 로고    scopus 로고
    • J. T. Houghton et al., Eds. Cambridge Univ. Press, Cambridge
    • V. Ramaswamy et al., in Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds. (Cambridge Univ. Press, Cambridge, 2001), pp. 349-416.
    • (2001) In Climate Change 2001: The Scientific Basis , pp. 349-416
    • Ramaswamy, V.1
  • 36
    • 0042867240 scopus 로고    scopus 로고
    • B. D. Santer et al., Science 301, 479 (2003).
    • (2003) Science , vol.301 , pp. 479
    • Santer, B.D.1
  • 37
    • 24644477945 scopus 로고    scopus 로고
    • note
    • Work at Lawrence Livermore National Laboratory (LLNL) was performed under the auspices of the U.S. Department of Energy (DOE), Environmental Sciences Division, contract W-7405-ENC-48. A portion of this study was supported by the U.S. DOE, Office of Biological and Environmental Research, as part of its Climate Change Prediction Program. T.M.L.W. was supported by NOM Office of Climate Programs (Climate Change Data and Detection) grant NA87CP0105. P.W.T. and G.J. were funded by the UK Department of the Environment, Food, and Rural Affairs. We acknowledge the international modeling groups for providing their data for analysis, the Joint Scientific Committee/Climate Variability and Predictability Working Group on Coupled Modeling and their Coupled Model Intercomparison Project and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support The IPCC Data Archive at LLNL is supported by the Office of Science, D.S. DOE. The static MSU weighting functions and UAH MSU data were provided by J. Christy (UAH). We thank I. Held, T. Delworth (both Geophysical Fluid Dynamics Laboratory), D. Easterting (National Climatic Data Center), B. Hicks (NOAA Air Resources Laboratory), and two anonymous reviewers for useful comments. O. Boucher (Hadley Centre), G. Flato (Canadian Climate Centre), and E. Roeckner (Max-Planck Institute for Meteorology) supplied information on the historical forcings used by CNRM-CM3, CCCma-CGCM3.1(T47), and ECHAM5/MPI-OM.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.