메뉴 건너뛰기




Volumn 5, Issue 1, 2006, Pages 61-66

Serum proteomic pattern analysis for early cancer detection

Author keywords

[No Author keywords available]

Indexed keywords

PLASMA PROTEIN;

EID: 33244481839     PISSN: 15330346     EISSN: None     Source Type: Journal    
DOI: 10.1177/153303460600500108     Document Type: Article
Times cited : (17)

References (39)
  • 1
    • 0038662530 scopus 로고    scopus 로고
    • Proteomic applications for the early detection of cancer
    • Wulfkuhle, J. D. et al. Proteomic Applications for the Early Detection of Cancer. Nature Review Cancer 3, 267-275 (2003).
    • (2003) Nature Review Cancer , vol.3 , pp. 267-275
    • Wulfkuhle, J.D.1
  • 2
    • 0038160051 scopus 로고    scopus 로고
    • Cancer diagnosis using proteomic patterns
    • Conrads, T. P. et al. Cancer Diagnosis Using Proteomic Patterns. Expert Rev. Mol. Diagn. 3, 411 (2003).
    • (2003) Expert Rev. Mol. Diagn. , vol.3 , pp. 411
    • Conrads, T.P.1
  • 3
    • 0347181849 scopus 로고    scopus 로고
    • A data review and re-assessment of ovarian cancer serum proteomic profiling
    • Sorace J. M. and Zhan, M. A Data Review and Re-assessment of Ovarian Cancer Serum Proteomic Profiling. BMC Bioinformatics 4, 24 (2003).
    • (2003) BMC Bioinformatics , vol.4 , pp. 24
    • Sorace, J.M.1    Zhan, M.2
  • 4
    • 0037120949 scopus 로고    scopus 로고
    • Serum proteomic patterns for detection of prostate cancer
    • Petricoin, E. F. et al. Serum Proteomic Patterns for Detection of Prostate Cancer. J. Natl. Cancer Inst. 94, 1576 (2002).
    • (2002) J. Natl. Cancer Inst. , vol.94 , pp. 1576
    • Petricoin, E.F.1
  • 5
    • 84990629710 scopus 로고
    • New desorption strategies for the mass spectrometric analysis of macromolecules
    • Hutchens, T. W. and Yip, T. T. New Desorption Strategies for the Mass Spectrometric Analysis of Macromolecules. Rapid. Commun. Mass Spectrom. 7, 576 (1993).
    • (1993) Rapid. Commun. Mass Spectrom. , vol.7 , pp. 576
    • Hutchens, T.W.1    Yip, T.T.2
  • 6
    • 0037399476 scopus 로고    scopus 로고
    • SELDI-TOF MS for diagnostic proteomics
    • Issaq, H. J. et al. SELDI-TOF MS for Diagnostic Proteomics. Anal. Chem. 75, 148a-155a (2003).
    • (2003) Anal. Chem. , vol.75
    • Issaq, H.J.1
  • 7
    • 0036996552 scopus 로고    scopus 로고
    • Genomics and proteomics: Application of novel technology to early detection and prevention of cancer
    • Michener, C. M. et al. Genomics and Proteomics: Application of Novel Technology to Early Detection and Prevention of Cancer. Cancer Detect Prev. 26, 249 (2002).
    • (2002) Cancer Detect Prev. , vol.26 , pp. 249
    • Michener, C.M.1
  • 8
    • 0036718796 scopus 로고    scopus 로고
    • Clinical proteomics: Translating benchside promise into bedside reality
    • Petricoin, E. F. et al. Clinical Proteomics: Translating Benchside Promise into Bedside Reality. Nat. Rev. Drug Discov. 1, 683 (2002).
    • (2002) Nat. Rev. Drug Discov. , vol.1 , pp. 683
    • Petricoin, E.F.1
  • 9
    • 0036320438 scopus 로고    scopus 로고
    • Proteomics for cancer biomarker discovery
    • Srinivas, P. R. et al. Proteomics for Cancer Biomarker Discovery. Clin. Chem. 48, 1160 (2002).
    • (2002) Clin. Chem. , vol.48 , pp. 1160
    • Srinivas, P.R.1
  • 10
    • 0034798922 scopus 로고    scopus 로고
    • Cancer proteomics: The state of the art
    • Herrmann, P. C. et al. Cancer Proteomics: The State of the Art. Dis. Markers. 17, 49 (2001).
    • (2001) Dis. Markers , vol.17 , pp. 49
    • Herrmann, P.C.1
  • 11
    • 85039347096 scopus 로고    scopus 로고
    • http://clinicalproteomics.steem.com/ppatterns.php
  • 12
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin, E. F. et al. Use of Proteomic Patterns in Serum to Identify Ovarian Cancer. Lancet. 359, 572 (2002).
    • (2002) Lancet , vol.359 , pp. 572
    • Petricoin, E.F.1
  • 13
    • 85039345778 scopus 로고    scopus 로고
    • http://clinicalproteomics.steem.com/download-ovar.php
  • 14
    • 0037000528 scopus 로고    scopus 로고
    • Proteomic approaches to tumor marker discovery
    • Rai, A. J. et al. Proteomic Approaches to Tumor Marker Discovery. Arch. Pathol. Lab. Med. 126, 1518 (2002).
    • (2002) Arch. Pathol. Lab. Med. , vol.126 , pp. 1518
    • Rai, A.J.1
  • 15
    • 0036791428 scopus 로고    scopus 로고
    • Boosted decision tree analysis of SELDI mass spectral serum profiles discriminates prostate cancer from non-cancer patients
    • Qu, Y. et al. Boosted Decision Tree Analysis of SELDI Mass Spectral Serum Profiles Discriminates Prostate Cancer From Non-cancer Patients. Clin. Chem. 48, 1835 (2002).
    • (2002) Clin. Chem. , vol.48 , pp. 1835
    • Qu, Y.1
  • 16
    • 0036023414 scopus 로고    scopus 로고
    • Normal, benign, pre-neoplastic and malignant prostate cells have distinct protein expression profiles resolved by SELDI mass spectrometry
    • Cazares, L. H. et al. Normal, Benign, Pre-neoplastic and Malignant Prostate Cells Have Distinct Protein Expression Profiles Resolved by SELDI Mass Spectrometry. Clin. Cancer Res. 8, 2541 (2002).
    • (2002) Clin. Cancer Res. , vol.8 , pp. 2541
    • Cazares, L.H.1
  • 17
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern matching algorithm that distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam, B. L. et al. Serum Protein Fingerprinting Coupled with a Pattern Matching Algorithm that Distinguishes Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men. Cancer Res. 62, 3609 (2002).
    • (2002) Cancer Res. , vol.62 , pp. 3609
    • Adam, B.L.1
  • 18
    • 0035491167 scopus 로고    scopus 로고
    • Proteomic approaches to biomarker discovery in prostate and bladder cancers
    • Adam, B. L. et al. Proteomic Approaches to Biomarker Discovery in Prostate and Bladder Cancers. Proteomics 1, 1264 (2001).
    • (2001) Proteomics , vol.1 , pp. 1264
    • Adam, B.L.1
  • 19
    • 0035074699 scopus 로고    scopus 로고
    • Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine
    • Vlahou, A. et al. Development of a Novel Proteomic Approach for the Detection of Transitional Cell Carcinoma of the Bladder in Urine. Am. J. Pathol. 58, 1491 (2001).
    • (2001) Am. J. Pathol. , vol.58 , pp. 1491
    • Vlahou, A.1
  • 20
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machine
    • Joachims, T. Transductive Inference for Text Classification Using Support Vector Machine. International Conference On Machine Learning (ICML'99), 200-209 (1999).
    • (1999) International Conference on Machine Learning (ICML'99) , pp. 200-209
    • Joachims, T.1
  • 21
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu, Y. A Comparative Study on Feature Selection Methods for Drug Discovery. Journal of Chemical Information and Computer Sciences 44, 1823-1828 (2004).
    • (2004) Journal of Chemical Information and Computer Sciences , vol.44 , pp. 1823-1828
    • Liu, Y.1
  • 22
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T. R. et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531-537 (1999).
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 26
    • 0037818380 scopus 로고    scopus 로고
    • High-performing feature selection for text classification
    • Rogati, M. and Yang, Y. High-performing Feature Selection for Text Classification. CIKM'02, 659-661 (2002).
    • (2002) CIKM'02 , pp. 659-661
    • Rogati, M.1    Yang, Y.2
  • 27
    • 14344266016 scopus 로고    scopus 로고
    • Interaction of feature selection methods and linear classification models
    • Brank, J. et al. Interaction of Feature Selection Methods and Linear Classification Models. Workshop On Text Learning (Textml-2002), (2002).
    • (2002) Workshop on Text Learning (Textml-2002)
    • Brank, J.1
  • 28
    • 0032596544 scopus 로고    scopus 로고
    • Feature selection in SVM text categorization
    • Taira, H. and Haruno, M. Feature Selection in SVM Text Categorization. AAAI-99, 480-486 (1999).
    • (1999) AAAI-99 , pp. 480-486
    • Taira, H.1    Haruno, M.2
  • 29
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Joachims, T. Text Categorization with Support Vector Machines: Learning with many Relevant Features. Proceeding Of ECML-98, 137-142 (1998).
    • (1998) Proceeding of ECML-98 , pp. 137-142
    • Joachims, T.1
  • 30
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown, M. P. S. et al. Knowledge-based Analysis of Microarray Gene Expression Data by Using Support Vector Machines. Proc. Natl. Acad. Sci. USA 97, 262-267 (2000).
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 262-267
    • Brown, M.P.S.1
  • 32
    • 0034818556 scopus 로고    scopus 로고
    • Gene functional classification from heterogeneous data
    • Pavlidis, P. et al. Gene Functional Classification from Heterogeneous Data. Proceedings Of RECOMB (2001).
    • (2001) Proceedings of RECOMB
    • Pavlidis, P.1
  • 34
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. S. et al. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 16, 906-914 (2000).
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 35
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I. et al. Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning 46, 389-422 (2002).
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1
  • 36
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding, C. and Dubchak, I. Multi-class Protein Fold Recognition Using Support Vector Machines and Neural Networks. Bioinformatics 17, 349-358 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 37
    • 2942601555 scopus 로고    scopus 로고
    • Support vector machines for predicting protein structural class
    • Cai, Y. et al. Support Vector Machines for Predicting Protein Structural Class. BMC Bioinformatics 2, 3-7 (2001).
    • (2001) BMC Bioinformatics , vol.2 , pp. 3-7
    • Cai, Y.1
  • 38
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • Bock, J. R. and Gough, D. A. Predicting Protein-protein Interactions from Primary Structure. Bioinformatics 17, 455-460 (2000).
    • (2000) Bioinformatics , vol.17 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 39
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua, S. and Sun Z. A Novel Method of Protein Secondary Structure Prediction with High Segment Overlap Measure: Support Vector Machine Approach. Journal Of Molecular Biology 308, 397-407 (2001).
    • (2001) Journal of Molecular Biology , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.