메뉴 건너뛰기




Volumn 20, Issue 4, 2004, Pages 375-382

Non-normal populations in quality applications: A revisited perspective

Author keywords

Distribution fitting; Moment matching; Non normal populations; Process capability analysis; Statistical process control

Indexed keywords

APPROXIMATION THEORY; DATA REDUCTION; MONTE CARLO METHODS; PROBLEM SOLVING; RELIABILITY THEORY; STATISTICAL PROCESS CONTROL;

EID: 2942726229     PISSN: 07488017     EISSN: None     Source Type: Journal    
DOI: 10.1002/qre.569     Document Type: Review
Times cited : (11)

References (22)
  • 2
    • 0002714736 scopus 로고    scopus 로고
    • Process capability indices - A review, 1992-2000
    • Kotz S, Johnson NL. Process capability indices - a review, 1992-2000. Journal of Quality Technology 2002; 34(1):2-19.
    • (2002) Journal of Quality Technology , vol.34 , Issue.1 , pp. 2-19
    • Kotz, S.1    Johnson, N.L.2
  • 3
    • 0032123894 scopus 로고    scopus 로고
    • A new approach to analyzing non-normal quality data with application to process capability analysis
    • Shore H. A new approach to analyzing non-normal quality data with application to process capability analysis. International Journal of Production Research (IJPR) 1998; 36(7):1917-1933.
    • (1998) International Journal of Production Research (IJPR) , vol.36 , Issue.7 , pp. 1917-1933
    • Shore, H.1
  • 4
    • 0003168393 scopus 로고
    • Process capability calculations for non-normal distributions
    • Clements JA. Process capability calculations for non-normal distributions. Quality Progress 1989; 22(2):49-55.
    • (1989) Quality Progress , vol.22 , Issue.2 , pp. 49-55
    • Clements, J.A.1
  • 5
    • 84921120295 scopus 로고
    • Comparisons of the percentage points of distributions with the same first four moments, chosen from eight different systems of frequency curves
    • Pearson ES, Johnson NL, Burr IW. Comparisons of the percentage points of distributions with the same first four moments, chosen from eight different systems of frequency curves. Communications in Statistics (Simulation and computation) 1979; B8(3):191-229.
    • (1979) Communications in Statistics (Simulation and Computation) , vol.B8 , Issue.3 , pp. 191-229
    • Pearson, E.S.1    Johnson, N.L.2    Burr, I.W.3
  • 6
    • 0001266416 scopus 로고    scopus 로고
    • Using Johnson curves to describe non-normal process data
    • Farnum NR. Using Johnson curves to describe non-normal process data. Quality Engineering 1996/7; 9:329-336.
    • (1996) Quality Engineering , vol.9 , pp. 329-336
    • Farnum, N.R.1
  • 9
    • 0031117909 scopus 로고    scopus 로고
    • Control charting based on attribute data: Bibliography and review
    • Woodall WH. Control charting based on attribute data: bibliography and review. Journal of Quality Technology 1997; 29:172-183.
    • (1997) Journal of Quality Technology , vol.29 , pp. 172-183
    • Woodall, W.H.1
  • 10
    • 0034555944 scopus 로고    scopus 로고
    • General control charts for attributes
    • Shore H. General control charts for attributes. IIE Transactions 2000; 32(12): 1149-1160.
    • (2000) IIE Transactions , vol.32 , Issue.12 , pp. 1149-1160
    • Shore, H.1
  • 12
    • 26844510934 scopus 로고
    • Control limits of QC charts for skewed distributions using weighted variance
    • Choobineh F, Ballard JL. Control limits of QC charts for skewed distributions using weighted variance. IEEE Transactions on Reliability 1987; 36:473-477.
    • (1987) IEEE Transactions on Reliability , vol.36 , pp. 473-477
    • Choobineh, F.1    Ballard, J.L.2
  • 14
    • 0034450468 scopus 로고    scopus 로고
    • Three approaches to analyze quality data originating in non-normal populations
    • Shore H. Three approaches to analyze quality data originating in non-normal populations. Quality Engineering 2000; 13(2):277-291.
    • (2000) Quality Engineering , vol.13 , Issue.2 , pp. 277-291
    • Shore, H.1
  • 17
    • 0012751308 scopus 로고
    • Fitting a distribution by the first two sample moments (partial and complete)
    • Shore H. Fitting a distribution by the first two sample moments (partial and complete). Computational Statistics and Data Analysis 1995; 19:563-577.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 563-577
    • Shore, H.1
  • 18
    • 0041354918 scopus 로고    scopus 로고
    • A new estimate of skewness with MSE smaller than that of the sample skewness
    • Shore H. A new estimate of skewness with MSE smaller than that of the sample skewness. Communications in Statistics (Simulation and Computation) 1996; 25(2):403-414.
    • (1996) Communications in Statistics (Simulation and Computation) , vol.25 , Issue.2 , pp. 403-414
    • Shore, H.1
  • 19
    • 0041855768 scopus 로고    scopus 로고
    • Approximating an unknown distribution when distribution information is extremely limited
    • Shore H. Approximating an unknown distribution when distribution information is extremely limited. Communications in Statistics (Simulation and Computation) 1998; 27(2):501-523.
    • (1998) Communications in Statistics (Simulation and Computation) , vol.27 , Issue.2 , pp. 501-523
    • Shore, H.1
  • 20
    • 0036956151 scopus 로고    scopus 로고
    • Response modeling methodology (RMM) - Exploring the properties of the implied error distribution
    • Shore H. Response modeling methodology (RMM) - Exploring the properties of the implied error distribution. Communications in Statistics (Theory and Methods) 2002; 31(12):2225-2249.
    • (2002) Communications in Statistics (Theory and Methods) , vol.31 , Issue.12 , pp. 2225-2249
    • Shore, H.1
  • 21
    • 0036611095 scopus 로고    scopus 로고
    • Modeling a response with self-generated and externally generated sources of variation
    • Shore H. Modeling a response with self-generated and externally generated sources of variation. Quality Engineering 2002; 14(4):563-578.
    • (2002) Quality Engineering , vol.14 , Issue.4 , pp. 563-578
    • Shore, H.1
  • 22
    • 1442357742 scopus 로고    scopus 로고
    • Response modeling methodology (RMM) - Validating evidence from engineering and the sciences
    • Shore H. Response modeling methodology (RMM) - Validating evidence from engineering and the sciences. Quality and Reliability Engineering International 2004; 20(1):61-79.
    • (2004) Quality and Reliability Engineering International , vol.20 , Issue.1 , pp. 61-79
    • Shore, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.