메뉴 건너뛰기




Volumn 59, Issue 1, 2006, Pages 26-35

Models developed by three techniques did not achieve acceptable prediction of binary trauma outcomes

Author keywords

Classification and regression trees; External validation; Logistic regression; Neural networks; Performance criteria; Prediction model

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; AUSTRALIA; CLASSIFICATION; DEATH; HOSPITALIZATION; INJURY; INTENSIVE CARE UNIT; INTERMETHOD COMPARISON; LOGISTIC REGRESSION ANALYSIS; MEDICAL INFORMATION; OUTCOMES RESEARCH; PREDICTION; PREVALENCE; PRIORITY JOURNAL; REGISTER; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL; VALIDATION PROCESS;

EID: 29144534302     PISSN: 08954356     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2005.05.007     Document Type: Article
Times cited : (17)

References (48)
  • 1
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • F. Harrell, K. Lee, and D. Mark Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors Stat Med 15 1996 361 367
    • (1996) Stat Med , vol.15 , pp. 361-367
    • Harrell, F.1    Lee, K.2    Mark, D.3
  • 2
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • D.G. Altman, and P. Royston What do we mean by validating a prognostic model? Stat Med 19 2000 453 473
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 3
    • 0141514712 scopus 로고    scopus 로고
    • External validation is necessary in prediction research: A clinical example
    • S.E. Bleeker, H.A. Moll, and E.W. Steyerberg External validation is necessary in prediction research: a clinical example J Clin Epidemiol 56 2003 826 832
    • (2003) J Clin Epidemiol , vol.56 , pp. 826-832
    • Bleeker, S.E.1    Moll, H.A.2    Steyerberg, E.W.3
  • 4
    • 0041382897 scopus 로고    scopus 로고
    • External validity of predictive models: A comparison of logistic regression, classification trees, and neural networks
    • N. Terrin, C.H. Schmid, J.L. Griffith, R.B. D'Agostino, and H.P. Selker External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks J Clin Epidemiol 56 2003 721 729
    • (2003) J Clin Epidemiol , vol.56 , pp. 721-729
    • Terrin, N.1    Schmid, C.H.2    Griffith, J.L.3    D'Agostino, R.B.4    Selker, H.P.5
  • 5
    • 0011827330 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • R. Dybowski V. Gant Landes Biosciences Publishers Austin, TX
    • B. Ripley, and R. Ripley Neural networks as statistical methods in survival analysis R. Dybowski V. Gant Artificial neural networks: prospects for medicine 1998 Landes Biosciences Publishers Austin, TX
    • (1998) Artificial Neural Networks: Prospects for Medicine
    • Ripley, B.1    Ripley, R.2
  • 6
    • 0031731379 scopus 로고    scopus 로고
    • Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
    • M.W. Kattan, K.R. Hess, and J.R. Beck Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression Comput Biomed Res 31 1998 363 373
    • (1998) Comput Biomed Res , vol.31 , pp. 363-373
    • Kattan, M.W.1    Hess, K.R.2    Beck, J.R.3
  • 7
    • 12944304624 scopus 로고    scopus 로고
    • A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and social and preventive activities scores
    • H. Allore, M.E. Tinetti, K.L.B. Araujo, S. Hardy, and P. Peduzzi A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and social and preventive activities scores J Clin Epidemiol 58 2005 154 166
    • (2005) J Clin Epidemiol , vol.58 , pp. 154-166
    • Allore, H.1    Tinetti, M.E.2    Araujo, K.L.B.3    Hardy, S.4    Peduzzi, P.5
  • 8
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
    • B. Eftekhar, K. Mohammad, H.E. Ardebili, M. Ghodsi, and E. Ketabchi Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data BMC Med Inform Decision Making 5 2005 3
    • (2005) BMC Med Inform Decision Making , vol.5 , pp. 3
    • Eftekhar, B.1    Mohammad, K.2    Ardebili, H.E.3    Ghodsi, M.4    Ketabchi, E.5
  • 9
    • 0035407617 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques with UKTRISS for estimating probability of survival after trauma: UK Trauma and Injury Severity Score
    • D.C. Becalick, and T.J. Coats Comparison of artificial intelligence techniques with UKTRISS for estimating probability of survival after trauma: UK Trauma and Injury Severity Score J Trauma 51 2001 123 133
    • (2001) J Trauma , vol.51 , pp. 123-133
    • Becalick, D.C.1    Coats, T.J.2
  • 10
    • 0036307068 scopus 로고    scopus 로고
    • Development of a model for prediction of survival in pediatric trauma patients: Comparison of artificial neural networks and logistic regression
    • S.M. DiRusso, A.A. Chahine, and T. Sullivan Development of a model for prediction of survival in pediatric trauma patients: comparison of artificial neural networks and logistic regression J Pediatr Surg 37 2002 1098 1104
    • (2002) J Pediatr Surg , vol.37 , pp. 1098-1104
    • Dirusso, S.M.1    Chahine, A.A.2    Sullivan, T.3
  • 11
    • 2642539413 scopus 로고    scopus 로고
    • Binary classification of dyslipidemia from the waist-to-hip ratio and body mass index: A comparison of linear, logistic, and CART models
    • M.C. Costanza, and F. Paccaud Binary classification of dyslipidemia from the waist-to-hip ratio and body mass index: a comparison of linear, logistic, and CART models BMC Med Res Methodol 4 2004 7 16
    • (2004) BMC Med Res Methodol , vol.4 , pp. 7-16
    • Costanza, M.C.1    Paccaud, F.2
  • 13
    • 29144505547 scopus 로고
    • Matching and prediction on the principle of biological classification
    • W.A. Belson Matching and prediction on the principle of biological classification Appl Stat 8 1959 65 75
    • (1959) Appl Stat , vol.8 , pp. 65-75
    • Belson, W.A.1
  • 14
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model of information storage and organization in the brain
    • F. Rosenblatt The perceptron: a probabilistic model of information storage and organization in the brain Psychol Rev 65 1958 386 408
    • (1958) Psychol Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 18
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion)
    • P. Royston, and D.G. Altman Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion) Appl Stat 43 1994 429 467
    • (1994) Appl Stat , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 20
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data and a proposal
    • J.N. Morgan, and J.A. Sonquist Problems in the analysis of survey data and a proposal J Am Stat Assoc 58 1963 415 434
    • (1963) J Am Stat Assoc , vol.58 , pp. 415-434
    • Morgan, J.N.1    Sonquist, J.A.2
  • 24
    • 0032707091 scopus 로고    scopus 로고
    • Derivation of a prediction rule for post-traumatic acute lung injury
    • T.H. Rainer, P.K.W. Lam, E.M.C. Wong, and R.A. Cocks Derivation of a prediction rule for post-traumatic acute lung injury Resuscitation 42 1999 187 196
    • (1999) Resuscitation , vol.42 , pp. 187-196
    • Rainer, T.H.1    Lam, P.K.W.2    Wong, E.M.C.3    Cocks, R.A.4
  • 25
    • 0036599514 scopus 로고    scopus 로고
    • Decision rule and utility of routine urine toxicology screening of trauma patients
    • M.I. Langdorf, S.E. Rudkin, K. Dellota, J.C. Fox, and S. Munden Decision rule and utility of routine urine toxicology screening of trauma patients Eur J Emerg Med 9 2002 115 121
    • (2002) Eur J Emerg Med , vol.9 , pp. 115-121
    • Langdorf, M.I.1    Rudkin, S.E.2    Dellota, K.3    Fox, J.C.4    Munden, S.5
  • 26
    • 0036240531 scopus 로고    scopus 로고
    • A clinical decision rule for identifying children with thoracic injuries after blunt torso trauma
    • J.F. Holmes, P.E. Sokolove, W.E. Brant, and N. Kuppermann A clinical decision rule for identifying children with thoracic injuries after blunt torso trauma Ann Emerg Med 39 2002 492 499
    • (2002) Ann Emerg Med , vol.39 , pp. 492-499
    • Holmes, J.F.1    Sokolove, P.E.2    Brant, W.E.3    Kuppermann, N.4
  • 27
    • 0141532242 scopus 로고    scopus 로고
    • A decision rule for identifying children at low risk for brain injuries after blunt head trauma
    • M.J. Palchak, J.F. Holmes, and C.W. Vance A decision rule for identifying children at low risk for brain injuries after blunt head trauma Ann Emerg Med 42 2003 492 506
    • (2003) Ann Emerg Med , vol.42 , pp. 492-506
    • Palchak, M.J.1    Holmes, J.F.2    Vance, C.W.3
  • 28
    • 2942724341 scopus 로고    scopus 로고
    • The utility of clinical and laboratory data for predicting intraabdominal injury among children
    • B.A. Cotton, B.W. Beckert, M.K. Smith, and R.S. Burd The utility of clinical and laboratory data for predicting intraabdominal injury among children J Trauma 56 2004 1068 1074
    • (2004) J Trauma , vol.56 , pp. 1068-1074
    • Cotton, B.A.1    Beckert, B.W.2    Smith, M.K.3    Burd, R.S.4
  • 30
    • 3242889811 scopus 로고    scopus 로고
    • Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables
    • A. Rovlias, and S. Kotsou Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables J Neurotrauma 21 2004 886 893
    • (2004) J Neurotrauma , vol.21 , pp. 886-893
    • Rovlias, A.1    Kotsou, S.2
  • 32
    • 29144470756 scopus 로고
    • Institute of Radio Engineers, Western Electronics Convention (WESCON) New York
    • B. Widrow, and M.E. Hoff Adaptive switching circuits, vol. 4 1960 Institute of Radio Engineers, Western Electronics Convention (WESCON) New York p 96-104
    • (1960) Adaptive Switching Circuits, Vol. 4
    • Widrow, B.1    Hoff, M.E.2
  • 36
    • 0033105476 scopus 로고    scopus 로고
    • A neural network approach to the diagnosis of morbidity outcomes in trauma care
    • R.P. Marble, and J.C. Healy A neural network approach to the diagnosis of morbidity outcomes in trauma care Artif Intell Med 15 1999 299 307
    • (1999) Artif Intell Med , vol.15 , pp. 299-307
    • Marble, R.P.1    Healy, J.C.2
  • 37
    • 0033623037 scopus 로고    scopus 로고
    • Application of neural networks and sensitivity analysis to improved prediction of trauma survival
    • A. Hunter, L. Kennedy, J. Henry, and I. Ferguson Application of neural networks and sensitivity analysis to improved prediction of trauma survival Comput Methods Programs Biomed 62 2000 11 19
    • (2000) Comput Methods Programs Biomed , vol.62 , pp. 11-19
    • Hunter, A.1    Kennedy, L.2    Henry, J.3    Ferguson, I.4
  • 38
    • 0035075212 scopus 로고    scopus 로고
    • Artificial neural network predicts CT scan abnormalities in pediatric patients with closed head injury
    • M. Sinha, C.S. Kennedy, and M.L. Ramundo Artificial neural network predicts CT scan abnormalities in pediatric patients with closed head injury J Trauma 50 2001 308 312
    • (2001) J Trauma , vol.50 , pp. 308-312
    • Sinha, M.1    Kennedy, C.S.2    Ramundo, M.L.3
  • 39
    • 0036768724 scopus 로고    scopus 로고
    • Role of artificial neural networks in prediction of survival of burn patients - A new approach
    • H.K. Estahbanati, and N. Bouduhi Role of artificial neural networks in prediction of survival of burn patients - a new approach Burns 28 2002 579 586
    • (2002) Burns , vol.28 , pp. 579-586
    • Estahbanati, H.K.1    Bouduhi, N.2
  • 40
    • 0037266435 scopus 로고    scopus 로고
    • Prediction of traumatic wound infection with a neural network-derived decision model
    • R.L. Lammers, D.L. Hudson, and M.E. Seaman Prediction of traumatic wound infection with a neural network-derived decision model Am J Emerg Med 21 2003 1 7
    • (2003) Am J Emerg Med , vol.21 , pp. 1-7
    • Lammers, R.L.1    Hudson, D.L.2    Seaman, M.E.3
  • 42
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J.A. Hanley, and B.J. McNeil The meaning and use of the area under a receiver operating characteristic (ROC) curve Radiology 143 1982 29 36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 43
    • 0032750970 scopus 로고    scopus 로고
    • Trauma scoring systems: A review
    • C. Senkowski, and M. McKenney Trauma scoring systems: a review J Am Coll Surg 189 1999 491 503
    • (1999) J Am Coll Surg , vol.189 , pp. 491-503
    • Senkowski, C.1    McKenney, M.2
  • 46
    • 0023182532 scopus 로고
    • Evaluating trauma care: The TRISS method
    • C.R. Boyd, M.A. Tolson, and W.S. Copes Evaluating trauma care: the TRISS method J Trauma 27 1987 370 378
    • (1987) J Trauma , vol.27 , pp. 370-378
    • Boyd, C.R.1    Tolson, M.A.2    Copes, W.S.3
  • 47
    • 2442426473 scopus 로고    scopus 로고
    • Bootstrap methods for developing predictive models
    • P.C. Austin, and J.V. Tu Bootstrap methods for developing predictive models Am Stat 58 2004 131 137
    • (2004) Am Stat , vol.58 , pp. 131-137
    • Austin, P.C.1    Tu, J.V.2
  • 48
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T.-S. Lim, W.-Y. Loh, and Y.-S. Shih A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms Machine Learn 40 2000 203 229
    • (2000) Machine Learn , vol.40 , pp. 203-229
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.