-
3
-
-
0039039370
-
Ergodic properties of stationary stable processes
-
CAMBANIS, S., HARDIN, C., JR. and WERON, A. (1987). Ergodic properties of stationary stable processes. Stochastic Process. Appl. 24 1-18.
-
(1987)
Stochastic Process. Appl.
, vol.24
, pp. 1-18
-
-
Cambanis, S.1
Hardin Jr., C.2
Weron, A.3
-
4
-
-
0011476074
-
Some mixing conditions for stationary symmetric stable stochastic processes
-
GROSS, A. (1994). Some mixing conditions for stationary symmetric stable stochastic processes. Stochastic Process. Appl. 51 277-295.
-
(1994)
Stochastic Process. Appl.
, vol.51
, pp. 277-295
-
-
Gross, A.1
-
5
-
-
38249003733
-
Ergodic properties of random measures on stationary sequences of sets
-
GROSS, A. and ROBERTSON, J. (1993). Ergodic properties of random measures on stationary sequences of sets. Stochastic Process. Appl. 46 249-265.
-
(1993)
Stochastic Process. Appl.
, vol.46
, pp. 249-265
-
-
Gross, A.1
Robertson, J.2
-
6
-
-
27644500745
-
Classification of states for operators
-
Univ. California Press, Berkeley
-
KRENGEL, U. (1967). Classification of states for operators. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 2 415-429. Univ. California Press, Berkeley.
-
(1967)
Proc. Fifth Berkeley Symp. Math. Statist. Probab.
, vol.2
, pp. 415-429
-
-
Krengel, U.1
-
8
-
-
0011657470
-
A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrsch
-
KUELBS, J. (1973). A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrsch. Verw. Gebiete 26 259-271.
-
(1973)
Verw. Gebiete
, vol.26
, pp. 259-271
-
-
Kuelbs, J.1
-
9
-
-
0002422017
-
The harmonic analysis of stationary processes
-
Doctoral thesis
-
MARUYAMA, G. (1949). The harmonic analysis of stationary processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 4 45-106. Doctoral thesis.
-
(1949)
Mem. Fac. Sci. Kyushu Univ. Ser. A
, vol.4
, pp. 45-106
-
-
Maruyama, G.1
-
11
-
-
0034560398
-
Ruin probability with claims modeled by a stationary ergodic stable process
-
MIKOSCH, T. and SAMORODNITSKY, G. (2000). Ruin probability with claims modeled by a stationary ergodic stable process. Ann. Probab. 28 1814-1851.
-
(2000)
Ann. Probab.
, vol.28
, pp. 1814-1851
-
-
Mikosch, T.1
Samorodnitsky, G.2
-
12
-
-
4544260770
-
Stable stationary processes related to cyclic flows
-
PIPIRAS, V. and TAQQU, M. S. (2004). Stable stationary processes related to cyclic flows. Ann. Probab. 32 2222-2260.
-
(2004)
Ann. Probab.
, vol.32
, pp. 2222-2260
-
-
Pipiras, V.1
Taqqu, M.S.2
-
13
-
-
38249010571
-
A note on ergodic symmetric stable processes
-
PODGÓRSKI, K. (1992). A note on ergodic symmetric stable processes. Stochastic Process. Appl. 43 355-362.
-
(1992)
Stochastic Process. Appl.
, vol.43
, pp. 355-362
-
-
Podgórski, K.1
-
14
-
-
8444240474
-
Point processes associated with stationary stable processes
-
RESNICK, S. and SAMORODNITSKY, G. (2004). Point processes associated with stationary stable processes. Stochastic Process. Appl. 114 191-210.
-
(2004)
Stochastic Process. Appl.
, vol.114
, pp. 191-210
-
-
Resnick, S.1
Samorodnitsky, G.2
-
15
-
-
0033249378
-
How misleading can sample ACF's of stable MA's be? (Very!)
-
RESNICK, S., SAMORODNITSKY, G. and XUE, F. (1999). How misleading can sample ACF's of stable MA's be? (Very!). Ann. Appl. Probab. 9 797-817.
-
(1999)
Ann. Appl. Probab.
, vol.9
, pp. 797-817
-
-
Resnick, S.1
Samorodnitsky, G.2
Xue, F.3
-
16
-
-
0041042277
-
Growth rates of sample covariances of stationary symmetric α-stable processes associated with null recurrent Markov chains
-
RESNICK, S., SAMORODNITSKY, G. and XUE, F. (2000). Growth rates of sample covariances of stationary symmetric α-stable processes associated with null recurrent Markov chains. Stochastic Process. Appl. 85 321-339.
-
(2000)
Stochastic Process. Appl.
, vol.85
, pp. 321-339
-
-
Resnick, S.1
Samorodnitsky, G.2
Xue, F.3
-
17
-
-
0000974297
-
On the structure of stationary stable processes
-
ROSIŃSKI, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163-1187.
-
(1995)
Ann. Probab.
, vol.23
, pp. 1163-1187
-
-
Rosiński, J.1
-
18
-
-
0041042278
-
Classes of mixing stable processes
-
ROSIŃSKI, J. and SAMORODNITSKY, G. (1996). Classes of mixing stable processes. Bernoulli 2 365-377.
-
(1996)
Bernoulli
, vol.2
, pp. 365-377
-
-
Rosiński, J.1
Samorodnitsky, G.2
-
19
-
-
0042732888
-
The equivalence of ergodicity and weak mixing for infinitely divisible processes
-
ROSIŃSKI, J. and ZAK, T. (1997). The equivalence of ergodicity and weak mixing for infinitely divisible processes. J. Theoret. Probab. 10 73-86.
-
(1997)
J. Theoret. Probab.
, vol.10
, pp. 73-86
-
-
Rosiński, J.1
Zak, T.2
-
20
-
-
3042587551
-
Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes
-
SAMORODNITSKY, G. (2004). Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes. Ann. Probab. 32 1438-1468.
-
(2004)
Ann. Probab.
, vol.32
, pp. 1438-1468
-
-
Samorodnitsky, G.1
-
21
-
-
7444266387
-
Maxima of continuous time stationary stable processes
-
SAMORODNITSKY, G. (2004). Maxima of continuous time stationary stable processes. Adv. in Appl. Probab. 36 805-823.
-
(2004)
Adv. in Appl. Probab.
, vol.36
, pp. 805-823
-
-
Samorodnitsky, G.1
-
23
-
-
0010896999
-
Some structure theorems for the symmetric stable laws
-
SCHILDER, M. (1970). Some structure theorems for the symmetric stable laws. Ann. Math. Statist. 41 412-421.
-
(1970)
Ann. Math. Statist.
, vol.41
, pp. 412-421
-
-
Schilder, M.1
-
26
-
-
21344495485
-
Stable mixed moving averages
-
SURGAILIS, D., ROSIŃSKI, J., MANDREKAR, V. and CAMBANIS, S. (1993). Stable mixed moving averages. Probab. Theory Related Fields 97 543-558.
-
(1993)
Probab. Theory Related Fields
, vol.97
, pp. 543-558
-
-
Surgailis, D.1
Rosiński, J.2
Mandrekar, V.3
Cambanis, S.4
|