메뉴 건너뛰기




Volumn 32, Issue 3 A, 2004, Pages 2222-2260

Stable stationary processes related to cyclic flows

Author keywords

Cocycles; Flows; Periodic and cyclic flows; Stable stationary processes

Indexed keywords


EID: 4544260770     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117904000000108     Document Type: Article
Times cited : (16)

References (22)
  • 3
    • 3142695934 scopus 로고
    • Measurable choice of limit points and the existence of separable and measurable processes
    • COHN, D. L. (1972). Measurable choice of limit points and the existence of separable and measurable processes. Z. Wahrsch. Verw. Gebiete 22 161-165.
    • (1972) Z. Wahrsch. Verw. Gebiete , vol.22 , pp. 161-165
    • Cohn, D.L.1
  • 4
    • 0011476074 scopus 로고
    • Some mixing conditions for stationary symmetric stable stochastic processes
    • GROSS, A. (1994). Some mixing conditions for stationary symmetric stable stochastic processes. Stochastic Process. Appl. 51 277-295.
    • (1994) Stochastic Process. Appl. , vol.51 , pp. 277-295
    • Gross, A.1
  • 6
    • 0000244098 scopus 로고
    • On the spectral representation of symmetric stable processes
    • HARDIN, C. D., JR. (1982). On the spectral representation of symmetric stable processes. J. Multivariate Anal. 12 385-401.
    • (1982) J. Multivariate Anal. , vol.12 , pp. 385-401
    • Hardin Jr., C.D.1
  • 8
    • 84972496118 scopus 로고
    • Quasi-flows
    • KUBO, I. (1969). Quasi-flows. Nagoya Math. J. 35 1-30.
    • (1969) Nagoya Math. J. , vol.35 , pp. 1-30
    • Kubo, I.1
  • 9
    • 84931205353 scopus 로고
    • Borel structure in groups and their duals
    • MACKEY, G. W. (1957). Borel structure in groups and their duals. Trans. Amer. Math. Soc. 85 134-165.
    • (1957) Trans. Amer. Math. Soc. , vol.85 , pp. 134-165
    • Mackey, G.W.1
  • 11
    • 0036022582 scopus 로고    scopus 로고
    • Decomposition of self-similar stable mixed moving averages
    • PIPIRAS, V. and TAQQU, M. S. (2002a). Decomposition of self-similar stable mixed moving averages. Probab. Theory Related Fields 123 412-452.
    • (2002) Probab. Theory Related Fields , vol.123 , pp. 412-452
    • Pipiras, V.1    Taqqu, M.S.2
  • 12
    • 0036018204 scopus 로고    scopus 로고
    • The structure of self-similar stable mixed moving averages
    • PIPIRAS, V. and TAQQU, M. S. (2002b). The structure of self-similar stable mixed moving averages. Ann. Probab. 30 898-932.
    • (2002) Ann. Probab. , vol.30 , pp. 898-932
    • Pipiras, V.1    Taqqu, M.S.2
  • 13
    • 0000974297 scopus 로고
    • On the structure of stationary stable processes
    • ROSIŃSKI, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163-1187.
    • (1995) Ann. Probab. , vol.23 , pp. 1163-1187
    • Rosiński, J.1
  • 15
    • 0009325566 scopus 로고    scopus 로고
    • Structure of stationary stable processes
    • (R. Adler, R. Feldman and M. S. Taqqu, eds.). Birkhäuser, Boston
    • ROSIŃSKI, J. (1998b). Structure of stationary stable processes. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications (R. Adler, R. Feldman and M. S. Taqqu, eds.) 461-472. Birkhäuser, Boston.
    • (1998) A Practical Guide to Heavy Tails: Statistical Techniques and Applications , pp. 461-472
    • Rosiński, J.1
  • 16
    • 0039771990 scopus 로고    scopus 로고
    • Decomposition of stationary α-stable random fields
    • ROSIŃSKI, J. (2000). Decomposition of stationary α-stable random fields. Ann. Probab. 28 1797-1813.
    • (2000) Ann. Probab. , vol.28 , pp. 1797-1813
    • Rosiński, J.1
  • 17
    • 0041042278 scopus 로고    scopus 로고
    • Classes of mixing stable processes
    • ROSIŃSKI, J. and SAMORODNITSKY, G. (1996). Classes of mixing stable processes. Bernoulli 2 365-377.
    • (1996) Bernoulli , vol.2 , pp. 365-377
    • Rosiński, J.1    Samorodnitsky, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.