메뉴 건너뛰기




Volumn 32, Issue 2, 2004, Pages 1438-1468

Extreme value theory, ergodic theory and the boundary between short memory and long memory for stationary stable processes

Author keywords

Conservative flow; Dissipative flow; Ergodic theory; Extreme value theory; Long memory; Long range dependence; Maxima; Nonsingular flow; Stable process; Stationary process

Indexed keywords


EID: 3042587551     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117904000000261     Document Type: Article
Times cited : (78)

References (22)
  • 6
    • 0002810030 scopus 로고
    • Long-range dependence: A review
    • (H. David and H. David, eds.). Iowa State Univ. Press, Ames
    • COX, D. (1984). Long-range dependence: A review. In Statistics: An Appraisal (H. David and H. David, eds.) 55-74. Iowa State Univ. Press, Ames.
    • (1984) Statistics: An Appraisal , pp. 55-74
    • Cox, D.1
  • 7
    • 0345990991 scopus 로고
    • Ergodic theory of Markov chains admitting an infinite invariant measure
    • HARRIS, T. and ROBBJNS, H. (1953). Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. Nad. Acad. Sci. 39 860-864.
    • (1953) Proc. Nad. Acad. Sci. , vol.39 , pp. 860-864
    • Harris, T.1    Robbjns, H.2
  • 10
    • 0002579881 scopus 로고
    • Incompressible transformations
    • MAHARAM, D. (1964). Incompressible transformations. Fund. Math. 56 35-50.
    • (1964) Fund. Math. , vol.56 , pp. 35-50
    • Maharam, D.1
  • 11
    • 0000380963 scopus 로고
    • Limit theorems on the self-normalized range for weakly and strongly dependent processes
    • MANDELBROT, B. (1975). Limit theorems on the self-normalized range for weakly and strongly dependent processes. Z. Wahrsch. Verw. Gebiete 31 271-285.
    • (1975) Z. Wahrsch. Verw. Gebiete , vol.31 , pp. 271-285
    • Mandelbrot, B.1
  • 14
    • 0034560398 scopus 로고    scopus 로고
    • Ruin probability with claims modeled by a stationary ergodic stable process
    • MIKOSCH, T. and SAMORODNITSKY, G. (2000). Ruin probability with claims modeled by a stationary ergodic stable process. Ann. Probab. 28 1814-1851.
    • (2000) Ann. Probab. , vol.28 , pp. 1814-1851
    • Mikosch, T.1    Samorodnitsky, G.2
  • 16
    • 0041042277 scopus 로고    scopus 로고
    • Growth rates of sample covariances of stationary symmetric α-stable processes associated with null recurrent Markov chains
    • RESNICK, S., SAMORODNITSKY, G. and XUE, F. (2000). Growth rates of sample covariances of stationary symmetric α-stable processes associated with null recurrent Markov chains. Stochastic Process. Appl. 85 321-339.
    • (2000) Stochastic Process. Appl. , vol.85 , pp. 321-339
    • Resnick, S.1    Samorodnitsky, G.2    Xue, F.3
  • 17
    • 0041905527 scopus 로고
    • Uniqueness of spectral representations of skewed stable processes and stationarity
    • (H. Kunita and H.-H. Kuo, eds.). Longman, Harlow
    • ROSIŃSKI, J. (1994). Uniqueness of spectral representations of skewed stable processes and stationarity. In Stochastic Analysis on Infinite-Dimensional Spaces (H. Kunita and H.-H. Kuo, eds.) 264-273. Longman, Harlow.
    • (1994) Stochastic Analysis on Infinite-dimensional Spaces , pp. 264-273
    • Rosiński, J.1
  • 18
    • 0000974297 scopus 로고
    • On the structure of stationary stable processes
    • ROSIŃSKI, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163-1187.
    • (1995) Ann. Probab. , vol.23 , pp. 1163-1187
    • Rosiński, J.1
  • 19
    • 0041042278 scopus 로고    scopus 로고
    • Classes of mixing stable processes
    • ROSIŃSKI, J. and SAMORODNITSKY, G. (1996). Classes of mixing stable processes. Bernoulli 2 365-378.
    • (1996) Bernoulli , vol.2 , pp. 365-378
    • Rosiński, J.1    Samorodnitsky, G.2
  • 22
    • 0000735135 scopus 로고
    • Mellin-Stiltjes transform in probability theory
    • ZOLOTAREV, V. (1957). Mellin-Stiltjes transform in probability theory. Theory Probab. Appl. 2 433-460.
    • (1957) Theory Probab. Appl. , vol.2 , pp. 433-460
    • Zolotarev, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.