-
5
-
-
0034826416
-
A sieve algorithm for the shortest lattice vector problem
-
ACM, New York
-
AJTAI, M., KUMAR, R., AND SIVAKUMAR, D. 2001. A sieve algorithm for the shortest lattice vector problem. In Proceedings of the 33rd ACM Symposium on the Theory of Computing. ACM, New York, 601-610.
-
(2001)
Proceedings of the 33rd ACM Symposium on the Theory of Computing
, pp. 601-610
-
-
Ajtai, M.1
Kumar, R.2
Sivakumar, D.3
-
7
-
-
0031119485
-
The hardness of approximate optima in lattices, codes and systems of linear equations
-
ARORA, S., BABAI, L., STERN, J., AND SWEEDYK, E. 1997. The hardness of approximate optima in lattices, codes and systems of linear equations. J. Comput. Syst. Sci. 54, 317-331.
-
(1997)
J. Comput. Syst. Sci.
, vol.54
, pp. 317-331
-
-
Arora, S.1
Babai, L.2
Stern, J.3
Sweedyk, E.4
-
8
-
-
0000303291
-
New bounds in some transference theorems in the geometry of numbers
-
BANASZCZYK, W. 1993. New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625-635.
-
(1993)
Math. Ann.
, vol.296
, pp. 625-635
-
-
Banaszczyk, W.1
-
9
-
-
84867977075
-
Applications of a new transference theorem to Ajtai's connection factor
-
CAI, J. 2003. Applications of a new transference theorem to Ajtai's connection factor. Discr. Appli. Math. 126, 1, 9-31.
-
(2003)
Discr. Appli. Math.
, vol.126
, Issue.1
, pp. 9-31
-
-
Cai, J.1
-
11
-
-
0032597114
-
ε) is NP-hard under randomized reductions
-
ε) is NP-hard under randomized reductions. J. Comput. Syst. Sci. 59, 2, 221-239.
-
(1999)
J. Comput. Syst. Sci.
, vol.59
, Issue.2
, pp. 221-239
-
-
Cai, J.1
Nerurkar, A.2
-
12
-
-
0141655066
-
∞ to within almost polynomial factors is NP-hard
-
∞ to within almost polynomial factors is NP-hard. Combinatorica 23, 2, 205-243.
-
(2003)
Combinatorica
, vol.23
, Issue.2
, pp. 205-243
-
-
Dinur, I.1
-
13
-
-
0032306712
-
Approximating CVP to within almost-polynomial factors is NP-hard
-
IEEE Computer Society Press, Los Alamitos, CA
-
DINUR, I., KINDLER, G., AND SAFRA, S. 1998. Approximating CVP to within almost-polynomial factors is NP-hard. In Proceedings of the 39th IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA.
-
(1998)
Proceedings of the 39th IEEE Symposium on Foundations of Computer Science
-
-
Dinur, I.1
Kindler, G.2
Safra, S.3
-
14
-
-
0032606385
-
Hardness of approximating the minimum distance of a linear code
-
IEEE Computer Society Press, Los Alamitos, CA
-
DUMER, I., MICCIANCIO, D., AND SUDAN, M. 1999. Hardness of approximating the minimum distance of a linear code. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA.
-
(1999)
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science
-
-
Dumer, I.1
Micciancio, D.2
Sudan, M.3
-
16
-
-
0034205405
-
On the limits of non-approximability of lattice problems
-
GOLDREICH, O., AND GOLDWASSER, S. 2000. On the limits of non-approximability of lattice problems. J. Comput. Syst. Sci. 60, 3, 540-563.
-
(2000)
J. Comput. Syst. Sci.
, vol.60
, Issue.3
, pp. 540-563
-
-
Goldreich, O.1
Goldwasser, S.2
-
17
-
-
0032613321
-
Approximating shortest lattice vectors is not harder than approximating closest lattice vectors
-
GOLDREICH, O., MICCIANCIO, D., SAFRA, S., AND SEIFERT, J. 1999. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Proc. Lett. 71, 2, 55-61.
-
(1999)
Inf. Proc. Lett.
, vol.71
, Issue.2
, pp. 55-61
-
-
Goldreich, O.1
Micciancio, D.2
Safra, S.3
Seifert, J.4
-
18
-
-
0342349222
-
Dual vectors and lower bounds for the nearest lattice point problem
-
HASTAD, J. 1988. Dual vectors and lower bounds for the nearest lattice point problem. Combinatorica 8, 75-81.
-
(1988)
Combinatorica
, vol.8
, pp. 75-81
-
-
Hastad, J.1
-
19
-
-
0020936543
-
Improved algorithms for integer programming and related lattice problems
-
ACM, New York
-
KANNAN, R. 1983. Improved algorithms for integer programming and related lattice problems. In Proceedings of the 15th ACM Symposium on Theory of Computing. ACM, New York, 193-206.
-
(1983)
Proceedings of the 15th ACM Symposium on Theory of Computing
, pp. 193-206
-
-
Kannan, R.1
-
20
-
-
0000126406
-
Minkowski's convex body theorem and integer programming
-
KANNAN, R. 1987. Minkowski's convex body theorem and integer programming. Math. Oper. Res. 12, 415-440.
-
(1987)
Math. Oper. Res.
, vol.12
, pp. 415-440
-
-
Kannan, R.1
-
22
-
-
0345269609
-
Complexity of SVP-A reader's digest
-
Complexity Theory Column, L. Hemaspaandra, Ed.
-
KUMAR, R., AND SIVAKUMAR, D. 2001. Complexity of SVP-A reader's digest. Complexity Theory Column, L. Hemaspaandra, Ed. SIGACT News 32, 3.
-
(2001)
SIGACT News
, vol.32
, pp. 3
-
-
Kumar, R.1
Sivakumar, D.2
-
23
-
-
34249953865
-
Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal lattice
-
LAGARIAS, J., LENSTRA, H., AND SCHNORR, C. 1990. Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333-348.
-
(1990)
Combinatorica
, vol.10
, pp. 333-348
-
-
Lagarias, J.1
Lenstra, H.2
Schnorr, C.3
-
24
-
-
0021936756
-
Solving low-density subset sum problems
-
LAGARIAS, J., AND ODLYZKO, A. 1985. Solving low-density subset sum problems. J. ACM 32, 1, 229-246.
-
(1985)
J. ACM
, vol.32
, Issue.1
, pp. 229-246
-
-
Lagarias, J.1
Odlyzko, A.2
-
25
-
-
0020733275
-
Solvability of radicals is in polynomial time
-
LANDAU, S., AND MILLER, G. 1985. Solvability of radicals is in polynomial time. J. Comput. Syst. Sci. 30, 2, 179-208.
-
(1985)
J. Comput. Syst. Sci.
, vol.30
, Issue.2
, pp. 179-208
-
-
Landau, S.1
Miller, G.2
-
26
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
LENSTRA, A., LENSTRA, H., AND Lovász, L. 1982. Factoring polynomials with rational coefficients. Math. Ann. 261, 513-534.
-
(1982)
Math. Ann.
, vol.261
, pp. 513-534
-
-
Lenstra, A.1
Lenstra, H.2
Lovász, L.3
-
27
-
-
0344838262
-
Integer programming with a fixed number of variables
-
Univ. of Amsterdam, Amsterdam, The Netherland
-
LENSTRA, H. 1981. Integer programming with a fixed number of variables. Tech. Report 81-03. Univ. of Amsterdam, Amsterdam, The Netherland.
-
(1981)
Tech. Report
, vol.81
, Issue.3
-
-
Lenstra, H.1
-
28
-
-
0035707359
-
The shortest vector problem is NP-hard to approximate to within some constant
-
MICCIANCIO, D. 2000. The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. Comput. 30, 6, 2008-2035.
-
(2000)
SIAM J. Comput.
, vol.30
, Issue.6
, pp. 2008-2035
-
-
Micciancio, D.1
-
32
-
-
0023532388
-
A hierarchy of polynomial-time basis reduction algorithms
-
SCHNORR, C. 1987. A hierarchy of polynomial-time basis reduction algorithms. Theoret. Comput. Sci. 53, 2-3, 201-224.
-
(1987)
Theoret. Comput. Sci.
, vol.53
, Issue.2-3
, pp. 201-224
-
-
Schnorr, C.1
-
33
-
-
0011039877
-
Another NP-complete problem and the complexity of computing short vectors in a lattice
-
Mathematische Instiut, Univ. of Amsterdam, Amsterdam, The Netherland
-
VAN EMDE BOAS, P. 1981. Another NP-complete problem and the complexity of computing short vectors in a lattice. Tech. Report 81-04. Mathematische Instiut, Univ. of Amsterdam, Amsterdam, The Netherland.
-
(1981)
Tech. Report
, vol.81
, Issue.4
-
-
Van Emde Boas, P.1
|