메뉴 건너뛰기




Volumn 52, Issue 5, 2005, Pages 789-808

Hardness of approximating the shortest vector problem in lattices

Author keywords

Approximation algorithms; Cryptography; Hardness of approximation; Lattices; Shortest vector problem

Indexed keywords

APPROXIMATION ALGORITHMS; HARDNESS OF APPROXIMATION; LATTICES; SHORTEST VECTOR PROBLEM;

EID: 27344453570     PISSN: 00045411     EISSN: 00045411     Source Type: Journal    
DOI: 10.1145/1089023.1089027     Document Type: Article
Times cited : (153)

References (33)
  • 7
    • 0031119485 scopus 로고    scopus 로고
    • The hardness of approximate optima in lattices, codes and systems of linear equations
    • ARORA, S., BABAI, L., STERN, J., AND SWEEDYK, E. 1997. The hardness of approximate optima in lattices, codes and systems of linear equations. J. Comput. Syst. Sci. 54, 317-331.
    • (1997) J. Comput. Syst. Sci. , vol.54 , pp. 317-331
    • Arora, S.1    Babai, L.2    Stern, J.3    Sweedyk, E.4
  • 8
    • 0000303291 scopus 로고
    • New bounds in some transference theorems in the geometry of numbers
    • BANASZCZYK, W. 1993. New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625-635.
    • (1993) Math. Ann. , vol.296 , pp. 625-635
    • Banaszczyk, W.1
  • 9
    • 84867977075 scopus 로고    scopus 로고
    • Applications of a new transference theorem to Ajtai's connection factor
    • CAI, J. 2003. Applications of a new transference theorem to Ajtai's connection factor. Discr. Appli. Math. 126, 1, 9-31.
    • (2003) Discr. Appli. Math. , vol.126 , Issue.1 , pp. 9-31
    • Cai, J.1
  • 11
    • 0032597114 scopus 로고    scopus 로고
    • ε) is NP-hard under randomized reductions
    • ε) is NP-hard under randomized reductions. J. Comput. Syst. Sci. 59, 2, 221-239.
    • (1999) J. Comput. Syst. Sci. , vol.59 , Issue.2 , pp. 221-239
    • Cai, J.1    Nerurkar, A.2
  • 12
    • 0141655066 scopus 로고    scopus 로고
    • ∞ to within almost polynomial factors is NP-hard
    • ∞ to within almost polynomial factors is NP-hard. Combinatorica 23, 2, 205-243.
    • (2003) Combinatorica , vol.23 , Issue.2 , pp. 205-243
    • Dinur, I.1
  • 16
    • 0034205405 scopus 로고    scopus 로고
    • On the limits of non-approximability of lattice problems
    • GOLDREICH, O., AND GOLDWASSER, S. 2000. On the limits of non-approximability of lattice problems. J. Comput. Syst. Sci. 60, 3, 540-563.
    • (2000) J. Comput. Syst. Sci. , vol.60 , Issue.3 , pp. 540-563
    • Goldreich, O.1    Goldwasser, S.2
  • 17
    • 0032613321 scopus 로고    scopus 로고
    • Approximating shortest lattice vectors is not harder than approximating closest lattice vectors
    • GOLDREICH, O., MICCIANCIO, D., SAFRA, S., AND SEIFERT, J. 1999. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Proc. Lett. 71, 2, 55-61.
    • (1999) Inf. Proc. Lett. , vol.71 , Issue.2 , pp. 55-61
    • Goldreich, O.1    Micciancio, D.2    Safra, S.3    Seifert, J.4
  • 18
    • 0342349222 scopus 로고
    • Dual vectors and lower bounds for the nearest lattice point problem
    • HASTAD, J. 1988. Dual vectors and lower bounds for the nearest lattice point problem. Combinatorica 8, 75-81.
    • (1988) Combinatorica , vol.8 , pp. 75-81
    • Hastad, J.1
  • 19
    • 0020936543 scopus 로고
    • Improved algorithms for integer programming and related lattice problems
    • ACM, New York
    • KANNAN, R. 1983. Improved algorithms for integer programming and related lattice problems. In Proceedings of the 15th ACM Symposium on Theory of Computing. ACM, New York, 193-206.
    • (1983) Proceedings of the 15th ACM Symposium on Theory of Computing , pp. 193-206
    • Kannan, R.1
  • 20
    • 0000126406 scopus 로고
    • Minkowski's convex body theorem and integer programming
    • KANNAN, R. 1987. Minkowski's convex body theorem and integer programming. Math. Oper. Res. 12, 415-440.
    • (1987) Math. Oper. Res. , vol.12 , pp. 415-440
    • Kannan, R.1
  • 22
    • 0345269609 scopus 로고    scopus 로고
    • Complexity of SVP-A reader's digest
    • Complexity Theory Column, L. Hemaspaandra, Ed.
    • KUMAR, R., AND SIVAKUMAR, D. 2001. Complexity of SVP-A reader's digest. Complexity Theory Column, L. Hemaspaandra, Ed. SIGACT News 32, 3.
    • (2001) SIGACT News , vol.32 , pp. 3
    • Kumar, R.1    Sivakumar, D.2
  • 23
    • 34249953865 scopus 로고
    • Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal lattice
    • LAGARIAS, J., LENSTRA, H., AND SCHNORR, C. 1990. Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333-348.
    • (1990) Combinatorica , vol.10 , pp. 333-348
    • Lagarias, J.1    Lenstra, H.2    Schnorr, C.3
  • 24
    • 0021936756 scopus 로고
    • Solving low-density subset sum problems
    • LAGARIAS, J., AND ODLYZKO, A. 1985. Solving low-density subset sum problems. J. ACM 32, 1, 229-246.
    • (1985) J. ACM , vol.32 , Issue.1 , pp. 229-246
    • Lagarias, J.1    Odlyzko, A.2
  • 25
    • 0020733275 scopus 로고
    • Solvability of radicals is in polynomial time
    • LANDAU, S., AND MILLER, G. 1985. Solvability of radicals is in polynomial time. J. Comput. Syst. Sci. 30, 2, 179-208.
    • (1985) J. Comput. Syst. Sci. , vol.30 , Issue.2 , pp. 179-208
    • Landau, S.1    Miller, G.2
  • 26
    • 34250244723 scopus 로고
    • Factoring polynomials with rational coefficients
    • LENSTRA, A., LENSTRA, H., AND Lovász, L. 1982. Factoring polynomials with rational coefficients. Math. Ann. 261, 513-534.
    • (1982) Math. Ann. , vol.261 , pp. 513-534
    • Lenstra, A.1    Lenstra, H.2    Lovász, L.3
  • 27
    • 0344838262 scopus 로고
    • Integer programming with a fixed number of variables
    • Univ. of Amsterdam, Amsterdam, The Netherland
    • LENSTRA, H. 1981. Integer programming with a fixed number of variables. Tech. Report 81-03. Univ. of Amsterdam, Amsterdam, The Netherland.
    • (1981) Tech. Report , vol.81 , Issue.3
    • Lenstra, H.1
  • 28
    • 0035707359 scopus 로고    scopus 로고
    • The shortest vector problem is NP-hard to approximate to within some constant
    • MICCIANCIO, D. 2000. The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. Comput. 30, 6, 2008-2035.
    • (2000) SIAM J. Comput. , vol.30 , Issue.6 , pp. 2008-2035
    • Micciancio, D.1
  • 32
    • 0023532388 scopus 로고
    • A hierarchy of polynomial-time basis reduction algorithms
    • SCHNORR, C. 1987. A hierarchy of polynomial-time basis reduction algorithms. Theoret. Comput. Sci. 53, 2-3, 201-224.
    • (1987) Theoret. Comput. Sci. , vol.53 , Issue.2-3 , pp. 201-224
    • Schnorr, C.1
  • 33
    • 0011039877 scopus 로고
    • Another NP-complete problem and the complexity of computing short vectors in a lattice
    • Mathematische Instiut, Univ. of Amsterdam, Amsterdam, The Netherland
    • VAN EMDE BOAS, P. 1981. Another NP-complete problem and the complexity of computing short vectors in a lattice. Tech. Report 81-04. Mathematische Instiut, Univ. of Amsterdam, Amsterdam, The Netherland.
    • (1981) Tech. Report , vol.81 , Issue.4
    • Van Emde Boas, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.