-
3
-
-
0029719917
-
Generating hard instances of lattice problems (extended abstract)
-
M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc. 28th ACM Symp. on Theory of Computing (STOC), pages 99-108, 1996.
-
(1996)
Proc. 28th ACM Symp. on Theory of Computing (STOC)
, pp. 99-108
-
-
Ajtai, M.1
-
7
-
-
0000303291
-
New bounds in some transference theorems in the geometry of numbers
-
W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(4):625-635, 1993.
-
(1993)
Mathematische Annalen
, vol.296
, Issue.4
, pp. 625-635
-
-
Banaszczyk, W.1
-
8
-
-
0034326044
-
A note on the non-NP-hardness of approximate lattice problems under general Cook reductions
-
J.-Y. Cai and A. Nerurkar. A note on the non-NP-hardness of approximate lattice problems under general Cook reductions. Inform. Process. Lett., 76(1-2):61-66, 2000.
-
(2000)
Inform. Process. Lett.
, vol.76
, Issue.1-2
, pp. 61-66
-
-
Cai, J.-Y.1
Nerurkar, A.2
-
9
-
-
0141655066
-
Approximating CVF to within almost-polynomial factors is NP-hard
-
I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVF to within almost-polynomial factors is NP-hard. Combinatorica, 23(2):205-243, 2003.
-
(2003)
Combinatorica
, vol.23
, Issue.2
, pp. 205-243
-
-
Dinur, I.1
Kindler, G.2
Raz, R.3
Safra, S.4
-
10
-
-
0036287433
-
The inapproximability of lattice and coding problems with preprocessing
-
U. Feige and D. Micciancio. The inapproximability of lattice and coding problems with preprocessing. In Computational Complexity, pages 44-52, 2002.
-
(2002)
Computational Complexity
, pp. 44-52
-
-
Feige, U.1
Micciancio, D.2
-
13
-
-
0034205405
-
On the limits of nonapproximability of lattice problems
-
O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems. J. Comput. System Sci., 60(3):540-563, 2000.
-
(2000)
J. Comput. System Sci.
, vol.60
, Issue.3
, pp. 540-563
-
-
Goldreich, O.1
Goldwasser, S.2
-
14
-
-
0032613321
-
Approximating shortest lattice vectors is not harder than approximating closest lattice vectors
-
O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inform. Process. Lett., 71(2):55-61, 1999.
-
(1999)
Inform. Process. Lett.
, vol.71
, Issue.2
, pp. 55-61
-
-
Goldreich, O.1
Micciancio, D.2
Safra, S.3
Seifert, J.-P.4
-
15
-
-
0024748719
-
Polynomial time algorithms for finding integer relations among real numbers
-
J. Håstad, B. Just, J. C. Lagarias, and C.-P. Schnorr. Polynomial time algorithms for finding integer relations among real numbers. SIAM J. Comput., 18(5):859-881, 1989.
-
(1989)
SIAM J. Comput.
, vol.18
, Issue.5
, pp. 859-881
-
-
Håstad, J.1
Just, B.2
Lagarias, J.C.3
Schnorr, C.-P.4
-
16
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58:13-30, 1963.
-
(1963)
Journal of the American Statistical Association
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
17
-
-
0020936543
-
Improved algorithms for integer programming and related lattice problems
-
th Symp. Theory. of Comp., pages 193-206, 1983.
-
(1983)
th Symp. Theory. of Comp.
, pp. 193-206
-
-
Kannan, R.1
-
18
-
-
0038107747
-
Exponential lower bound for 2-query locally decodable codes via a quantum argument
-
I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum argument. In Proc. 35th ACM Symp. on Theory of Computing (STOC), pages 106-115, 2003.
-
(2003)
Proc. 35th ACM Symp. on Theory of Computing (STOC)
, pp. 106-115
-
-
Kerenidis, I.1
De Wolf, R.2
-
20
-
-
0027869083
-
Learning decision trees using the fourier spectrum
-
E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. SIAM J. Comput., 22(6): 1331-1348, 1993.
-
(1993)
SIAM J. Comput.
, vol.22
, Issue.6
, pp. 1331-1348
-
-
Kushilevitz, E.1
Mansour, Y.2
-
21
-
-
34249953865
-
Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice
-
J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333-348, 1990.
-
(1990)
Combinatorica
, vol.10
, Issue.4
, pp. 333-348
-
-
Lagarias, J.C.1
Lenstra Jr., H.W.2
Schnorr, C.-P.3
-
22
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515-534, 1982.
-
(1982)
Math. Ann.
, vol.261
, pp. 515-534
-
-
Lenstra, A.K.1
Lenstra, H.W.2
Lovász, L.3
-
23
-
-
0035707359
-
The shortest vector problem is NP-hard to approximate to within some constant
-
Mar. Preliminary version in FOCS 1998
-
D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant. SIAM Journal on Computing, 30(6):2008-2035, Mar. 2001. Preliminary version in FOCS 1998.
-
(2001)
SIAM Journal on Computing
, vol.30
, Issue.6
, pp. 2008-2035
-
-
Micciancio, D.1
-
24
-
-
0009554539
-
Complexity of Lattice Problems: A cryptographic perspective
-
Kluwer Academic Publishers, Boston, Massachusetts, Mar.
-
D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective, volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, Mar. 2002.
-
(2002)
The Kluwer International Series in Engineering and Computer Science
, vol.671
-
-
Micciancio, D.1
Goldwasser, S.2
-
26
-
-
0023532388
-
A hierarchy of polynomial time lattice basis reduction algorithms
-
C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53(2-3):201-224, 1987.
-
(1987)
Theoretical Computer Science
, vol.53
, Issue.2-3
, pp. 201-224
-
-
Schnorr, C.-P.1
-
27
-
-
0008242214
-
Factoring integers and computing discrete logarithms via diophantine approximation
-
Springer-Verlag
-
C.-P. Schnorr. Factoring integers and computing discrete logarithms via diophantine approximation. In Proc. of Eurocrypt '91, volume 547, pages 171-181. Springer-Verlag, 1991.
-
(1991)
Proc. of Eurocrypt '91
, vol.547
, pp. 171-181
-
-
Schnorr, C.-P.1
-
28
-
-
0008160014
-
Another NP-complete problem and the complexity of computing short vectors in a lattice
-
University of Amsterdam, Department of Mathematics, Netherlands, Technical Report 8104
-
P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical report, University of Amsterdam, Department of Mathematics, Netherlands, 1981. Technical Report 8104.
-
(1981)
Technical Report
-
-
Van Emde Boas, P.1
-
29
-
-
17744370172
-
-
Master's Thesis, University of Chicago, Department of Computer Science, TR-2002-03
-
D. Štefankovič. Fourier transforms in computer science. Master's Thesis, University of Chicago, Department of Computer Science, TR-2002-03.
-
Fourier Transforms in Computer Science
-
-
Štefankovič, D.1
|