-
1
-
-
0031644084
-
The shortest vector problem is NP-hard for randomized reductions
-
Dallas, TX, May
-
M. Ajtai, The shortest vector problem is NP-hard for randomized reductions, in: Proc. 30th Annual ACM Symposium on Theory of Computing (STOC'98), Dallas, TX, May 1998, pp. 10-19.
-
(1998)
Proc. 30th Annual ACM Symposium on Theory of Computing (STOC'98)
, pp. 10-19
-
-
Ajtai, M.1
-
2
-
-
0031119485
-
The hardness of approximate optima in lattices, codes, and systems of linear equations
-
S. Arora, L. Babai, J. Stern, Z. Sweedyk, The hardness of approximate optima in lattices, codes, and systems of linear equations, J. Comput. System Sci. 54 (2) (1997) 317-331.
-
(1997)
J. Comput. System Sci.
, vol.54
, Issue.2
, pp. 317-331
-
-
Arora, S.1
Babai, L.2
Stern, J.3
Sweedyk, Z.4
-
3
-
-
0017973512
-
On the inherent intractability of certain coding problems
-
E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inform. Theory IT-24 (3) (1978) 384-386.
-
(1978)
IEEE Trans. Inform. Theory IT
, vol.24
, Issue.3
, pp. 384-386
-
-
Berlekamp, E.R.1
McEliece, R.J.2
Van Tilborg, H.C.A.3
-
4
-
-
51249173801
-
On Lovász' lattice reduction and the nearest lattice point problem
-
L. Babai, On Lovász' lattice reduction and the nearest lattice point problem, Combinatorica 6 (1) (1986) 1-13.
-
(1986)
Combinatorica
, vol.6
, Issue.1
, pp. 1-13
-
-
Babai, L.1
-
5
-
-
0032306712
-
Approximating CVP to within almost-polynomial factors is NP-hard
-
Palo Alto, CA, November
-
I. Dinur, G. Kindler, S. Safra, Approximating CVP to within almost-polynomial factors is NP-hard, in: Proc. 39th Symposium on Foundations of Computer Science (FOCS'98), Palo Alto, CA, November 1998, pp. 99-109.
-
(1998)
Proc. 39th Symposium on Foundations of Computer Science (FOCS'98)
, pp. 99-109
-
-
Dinur, I.1
Kindler, G.2
Safra, S.3
-
6
-
-
0032606385
-
Hardness of approximating the minimum distance of a linear code
-
New York, October
-
I. Dumer, D. Micciancio, M. Sudan, Hardness of approximating the minimum distance of a linear code, in: Proc. 40th Symposium on Foundations of Computer Science (FOCS'99), New York, October 1999.
-
(1999)
Proc. 40th Symposium on Foundations of Computer Science (FOCS'99)
-
-
Dumer, I.1
Micciancio, D.2
Sudan, M.3
-
7
-
-
0030289448
-
Introduction to the Special Issue on Codes and Complexity
-
J. Feigenbaum, G.D. Forney Jr., B.H. Marcus, R.J. McEliece, A. Vardy, Introduction to the Special Issue on Codes and Complexity, IEEE Trans. Inform. Theory 42 (6) (1996) 1649-1657.
-
(1996)
IEEE Trans. Inform. Theory
, vol.42
, Issue.6
, pp. 1649-1657
-
-
Feigenbaum, J.1
Forney Jr., G.D.2
Marcus, B.H.3
McEliece, R.J.4
Vardy, A.5
-
8
-
-
0005382386
-
Note on shortest and nearest lattice vectors, I
-
M. Henk, Note on shortest and nearest lattice vectors, Inform. Process. Lett. 61 (4) (1997) 183-188.
-
(1997)
Nform. Process. Lett.
, vol.61
, Issue.4
, pp. 183-188
-
-
Henk, M.1
-
9
-
-
0000351029
-
Algorithmic geometry of numbers
-
R. Kannan, Algorithmic geometry of numbers, Ann. Reviews Comput. Sci. 2 (1987) 231-267.
-
(1987)
Ann. Reviews Comput. Sci.
, vol.2
, pp. 231-267
-
-
Kannan, R.1
-
10
-
-
0032644924
-
A note on the shortest lattice vector problem
-
Atlanta, GA, May
-
R. Kumar, D. Sivakumar, A note on the shortest lattice vector problem, in: Proc. 14th Annual IEEE Conference on Computational Complexity (Complexity'99), Atlanta, GA, May 1999, pp. 200-204.
-
(1999)
Proc. 14th Annual IEEE Conference on Computational Complexity (Complexity'99)
, pp. 200-204
-
-
Kumar, R.1
Sivakumar, D.2
-
11
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (4) (1982) 515-534.
-
(1982)
Math. Ann.
, vol.261
, Issue.4
, pp. 515-534
-
-
Lenstra, A.K.1
Lenstra, H.W.2
Lovász, L.3
-
12
-
-
0032314321
-
The shortest vector in a lattice is hard to approximate to within some constant
-
Palo Alto, CA, November
-
D. Micciancio, The shortest vector in a lattice is hard to approximate to within some constant, in: Proc. 39th Symposium on Foundations of Computer Science (FOCS'98), Palo Alto, CA, November 1998, pp. 92-98.
-
(1998)
Proc. 39th Symposium on Foundations of Computer Science (FOCS'98)
, pp. 92-98
-
-
Micciancio, D.1
-
13
-
-
0023532388
-
A hierarchy of polynomial time lattice basis reduction algorithms
-
C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoret. Comput. Sci. 53 (2-3) (1987) 201-224.
-
(1987)
Theoret. Comput. Sci.
, vol.53
, Issue.2-3
, pp. 201-224
-
-
Schnorr, C.P.1
-
15
-
-
0030672385
-
Algorithmic complexity in coding theory and the minimum distance problem
-
El Paso, TX, May
-
A. Vardy, Algorithmic complexity in coding theory and the minimum distance problem, in: Proc. 29th Annual ACM Symposium on Theory of Computing (STOC'97), El Paso, TX, May 1997, pp. 92-109.
-
(1997)
Proc. 29th Annual ACM Symposium on Theory of Computing (STOC'97)
, pp. 92-109
-
-
Vardy, A.1
|