-
5
-
-
49149137309
-
Finite-difference solutions of a non-linear Schrödinger equation
-
M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a non-linear Schrödinger equation, J. Comp. Phys. 44 (2), 277-288 (1981).
-
(1981)
J. Comp. Phys.
, vol.44
, Issue.2
, pp. 277-288
-
-
Delfour, M.1
Fortin, M.2
Payre, G.3
-
6
-
-
48549114390
-
Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation
-
T.R. Taha and M. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comp. Phys. 55 (2), 203-230 (1984).
-
(1984)
J. Comp. Phys.
, vol.55
, Issue.2
, pp. 203-230
-
-
Taha, T.R.1
Ablowitz, M.2
-
7
-
-
84961470712
-
Methods for the numerical solution of the nonlinear Schrödinger equation
-
J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comput. 43 (167/168), 21-27 (1984).
-
(1984)
Math. Comput.
, vol.43
, Issue.167-168
, pp. 21-27
-
-
Sanz-Serna, J.M.1
-
8
-
-
0001257175
-
Numerical solution of the nonlinear Schrödinger equation
-
B.M. Herbst, J.Ll. Morris and A.R. Mitchell, Numerical solution of the nonlinear Schrödinger equation, J. Comp. Phys. 60 (2), 282-305 (1985).
-
(1985)
J. Comp. Phys.
, vol.60
, Issue.2
, pp. 282-305
-
-
Herbst, B.M.1
Morris, J.L.2
Mitchell, A.R.3
-
9
-
-
2442538708
-
The convergence of numerical method for nonlinear Schrödinger equation
-
B.Y. Guo, The convergence of numerical method for nonlinear Schrödinger equation, J. Comp. Math. 4 (2), 121-130 (1986).
-
(1986)
J. Comp. Math.
, vol.4
, Issue.2
, pp. 121-130
-
-
Guo, B.Y.1
-
10
-
-
77957214313
-
Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation
-
J.M. Sanz-Serna and J.G. Verwer, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal. 6 (1), 25-42 (1986).
-
(1986)
IMA J. Numer. Anal.
, vol.6
, Issue.1
, pp. 25-42
-
-
Sanz-Serna, J.M.1
Verwer, J.G.2
-
11
-
-
38249029515
-
An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation
-
Y. Tourigny and J. Morris, An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation, J. Comp. Phys. 76 (1), 103-130 (1988).
-
(1988)
J. Comp. Phys.
, vol.76
, Issue.1
, pp. 103-130
-
-
Tourigny, Y.1
Morris, J.2
-
12
-
-
0010295721
-
Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme
-
F. Zhang, V.M. Pérez-García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme, Appl. Math. Comput. 71 (2/3), 165-177 (1995).
-
(1995)
Appl. Math. Comput.
, vol.71
, Issue.2-3
, pp. 165-177
-
-
Zhang, F.1
Pérez-García, V.M.2
Vázquez, L.3
-
13
-
-
33746314863
-
Symplectic integration of Hamiltonian systems
-
P.J. Channel and J.C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (2), 231-259 (1990).
-
(1990)
Nonlinearity
, vol.3
, Issue.2
, pp. 231-259
-
-
Channel, P.J.1
Scovel, J.C.2
-
14
-
-
0002779128
-
On difference schemes and symplectic geometry
-
Edited by K. Feng, Science Press, Beijing
-
K. Feng, On difference schemes and symplectic geometry, In Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, (Edited by K. Feng), pp. 42-58, Science Press, Beijing, (1985).
-
(1985)
Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations
, pp. 42-58
-
-
Feng, K.1
-
15
-
-
0002961720
-
Construction of canonical difference schemes for Hamiltonian formalism via generating functions
-
K. Feng, H.M. Wu, M.Z. Qin and D.L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comput. Math. 7 (1), 71-96 (1989).
-
(1989)
J. Comput. Math.
, vol.7
, Issue.1
, pp. 71-96
-
-
Feng, K.1
Wu, H.M.2
Qin, M.Z.3
Wang, D.L.4
-
16
-
-
0003191706
-
On the approximation of linear Hamiltonian-systems
-
Z. Ge and K. Feng, On the approximation of linear Hamiltonian-systems, J. Comput. Math. 6 (1), 88-97 (1988).
-
(1988)
J. Comput. Math.
, vol.6
, Issue.1
, pp. 88-97
-
-
Ge, Z.1
Feng, K.2
-
17
-
-
45449123467
-
Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators
-
Z. Ge and J.E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Physics Letters A 133 (3), 134-139 (1988).
-
(1988)
Physics Letters A
, vol.133
, Issue.3
, pp. 134-139
-
-
Ge, Z.1
Marsden, J.E.2
-
18
-
-
0011615763
-
Canonical Runge-Kutta methods
-
F.M. Lasagni, Canonical Runge-Kutta methods, ZAMP 39 (6), 952-953 (1988).
-
(1988)
ZAMP
, vol.39
, Issue.6
, pp. 952-953
-
-
Lasagni, F.M.1
-
19
-
-
0021428479
-
Some properties of the discrete Hamiltonian method
-
C.R. Menyuk, Some properties of the discrete Hamiltonian method, Physica D 11 (1-3), 109-129 (1984).
-
(1984)
Physica D
, vol.11
, Issue.1-3
, pp. 109-129
-
-
Menyuk, C.R.1
-
20
-
-
0020798563
-
A canonical integration technique
-
R.D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci. 30 (4), 2669-2671 (1983).
-
(1983)
IEEE Trans. Nucl. Sci.
, vol.30
, Issue.4
, pp. 2669-2671
-
-
Ruth, R.D.1
-
21
-
-
0038976122
-
Runge-Kutta schemes for Hamiltonian-systems
-
J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian-systems, BIT 28 (4), 877-883 (1988).
-
(1988)
BIT
, vol.28
, Issue.4
, pp. 877-883
-
-
Sanz-Serna, J.M.1
-
23
-
-
0006355099
-
Symplectic numerical integration of Hamiltonian systems
-
MSRI Series, (Edited by T. Ratiu), Springer-Verlag, New York
-
J.C. Scovel, Symplectic numerical integration of Hamiltonian systems, In The Geometry of Hamiltonian Systems, MSRI Series, Volume 22, (Edited by T. Ratiu), pp. 463-496, Springer-Verlag, New York, (1991).
-
(1991)
The Geometry of Hamiltonian Systems
, vol.22
, pp. 463-496
-
-
Scovel, J.C.1
-
24
-
-
0042475779
-
On the preservation of the symplectic structure for numerical integration of Hamiltonian systems
-
Edited by S.S. Filippov, USSR Academy of Sciences, Moscow
-
Y.B. Suris, On the preservation of the symplectic structure for numerical integration of Hamiltonian systems, In Numerical Solution of Differential Equations, (Edited by S.S. Filippov), pp. 148-160, USSR Academy of Sciences, Moscow, (1988).
-
(1988)
Numerical Solution of Differential Equations
, pp. 148-160
-
-
Suris, Y.B.1
-
25
-
-
43949152659
-
Formal energy of symplectic scheme for Hamiltonian systems and its applications (I)
-
Y.F. Tang, Formal energy of symplectic scheme for Hamiltonian systems and its applications (I), Computers Math. Applic. 27 (7), 31-39 (1994).
-
(1994)
Computers Math. Applic.
, vol.27
, Issue.7
, pp. 31-39
-
-
Tang, Y.F.1
-
26
-
-
0001005075
-
Construction of higher-order symplectic integrators
-
H. Yoshida, Construction of higher-order symplectic integrators, Physics Letters A 150 (5-7), 262-268 (1990).
-
(1990)
Physics Letters A
, vol.150
, Issue.5-7
, pp. 262-268
-
-
Yoshida, H.1
-
28
-
-
0000471386
-
An envelope soliton problem
-
J.W. Miles, An envelope soliton problem, SIAM J. Appl. Math. 41 (2), 227-230 (1981).
-
(1981)
SIAM J. Appl. Math.
, vol.41
, Issue.2
, pp. 227-230
-
-
Miles, J.W.1
|