메뉴 건너뛰기




Volumn 4, Issue 4, 2004, Pages 415-430

ILP: A short look back and a longer look forward

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; CONSTRAINT THEORY; DATABASE SYSTEMS; DNA; LEARNING SYSTEMS; MULTIMEDIA SYSTEMS; PROBABILITY;

EID: 2542450091     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244304773936009     Document Type: Conference Paper
Times cited : (36)

References (46)
  • 7
    • 9144267095 scopus 로고    scopus 로고
    • An introduction to inductive logic programming
    • S. Džeroski and N. Lavrač, editors. Springer, Berlin
    • S. Džeroski and N. Lavrač. An introduction to inductive logic programming. In S. Džeroski and N. Lavrač, editors, Relational Data Mining, pages 48-71. Springer, Berlin, 2001.
    • (2001) Relational Data Mining , pp. 48-71
    • Džeroski, S.1    Lavrač, N.2
  • 8
    • 0002047785 scopus 로고    scopus 로고
    • Inductive logic programming and knowledge discovery in databases
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors
    • S. Džeroski. Inductive logic programming and knowledge discovery in databases. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining. 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining
    • Džeroski, S.1
  • 9
    • 0031997218 scopus 로고    scopus 로고
    • Discovery of pharmacophores using inductive logic programming
    • P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Discovery of pharmacophores using Inductive Logic Programming. Machine Learning, 30:241-270, 1998.
    • (1998) Machine Learning , vol.30 , pp. 241-270
    • Finn, P.1    Muggleton, S.2    Page, D.3    Srinivasan, A.4
  • 11
    • 0041779094 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • S. Dzeroski and N. Lavrac, editors, chapter 13. Springer, Berlin
    • L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In S. Dzeroski and N. Lavrac, editors, Relational Data Mining, chapter 13, pages 307-335. Springer, Berlin, 2001.
    • (2001) Relational Data Mining , pp. 307-335
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Pfeffer, A.4
  • 13
    • 0034140167 scopus 로고    scopus 로고
    • Heavy-tailed phenomena in satisfiability and constraint satisfaction problems
    • C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning, 24:67-100, 2000.
    • (2000) Journal of Automated Reasoning , vol.24 , pp. 67-100
    • Gomes, C.1    Selman, B.2    Crato, N.3    Kautz, H.4
  • 14
    • 38249038063 scopus 로고
    • Subsumption and implication
    • G. Gottlob. Subsumption and implication. Information Processing Letters, 24(2): 109-111, 1987.
    • (1987) Information Processing Letters, , vol.24 , Issue.2 , pp. 109-111
    • Gottlob, G.1
  • 15
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • D. Heckerman. A tutorial on learning with Bayesian networks. Microsoft Technical Report MSR-TR-95-06, 1995.
    • (1995) Microsoft Technical Report , vol.MSR-TR-95-06
    • Heckerman, D.1
  • 17
    • 0000832248 scopus 로고
    • Mathematical problems
    • English translation of original German, provided by Mary Winston
    • D. Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 8:437-479, 1902. English translation of original German, provided by Mary Winston.
    • (1902) Bulletin of the American Mathematical Society , vol.8 , pp. 437-479
    • Hilbert, D.1
  • 21
    • 0030044168 scopus 로고    scopus 로고
    • Structure-activity relationships derived by machine learning: The use of atoms and their bond connectives to predict mutagenicity by inductive logic programming
    • R. King, S. Muggleton, A. Srinivasan, and M. Sternberg. Structure-activity relationships derived by machine learning: The use of atoms and their bond connectives to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences, 93:438-442, 1996.
    • (1996) Proceedings of the National Academy of Sciences , vol.93 , pp. 438-442
    • King, R.1    Muggleton, S.2    Srinivasan, A.3    Sternberg, M.4
  • 24
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43(1):29-44, 2001.
    • (2001) International Journal of Computer Vision , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 26
    • 0037122709 scopus 로고    scopus 로고
    • A new approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors
    • January
    • N. Marchand-Geneste, K. Watson, B. Alsberg, and R. King. A new approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase b inhibitors. Journal of Medicinal Chemistry, 45(2):399-409, January 2002.
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.2 , pp. 399-409
    • Marchand-Geneste, N.1    Watson, K.2    Alsberg, B.3    King, R.4
  • 28
    • 0003682772 scopus 로고
    • The need for biases in learning generalizations
    • Department of Computer Science, Rutgers University
    • T.M. Mitchell. The need for biases in learning generalizations. Technical Report CBM-TR-117, Department of Computer Science, Rutgers University, 1980.
    • (1980) Technical Report , vol.CBM-TR-117
    • Mitchell, T.M.1
  • 31
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245-286, 1995.
    • (1995) New Generation Computing , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 34
    • 0026492833 scopus 로고
    • Protein secondary structure prediction using logic-based machine learning
    • S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction using logic-based machine learning. Protein Engineering, 5(7):647-657, 1992.
    • (1992) Protein Engineering , vol.5 , Issue.7 , pp. 647-657
    • Muggleton, S.1    King, R.2    Sternberg, M.3
  • 36
    • 0030737325 scopus 로고    scopus 로고
    • Answering queries from context-sensitive probabilistic knowledge bases
    • L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171:147-177, 1997.
    • (1997) Theoretical Computer Science , vol.171 , pp. 147-177
    • Ngo, L.1    Haddawy, P.2
  • 40
    • 0012457092 scopus 로고    scopus 로고
    • Parallel and sequential algorithms for data mining using inductive logic
    • D. Skillicorn and Y. Wang. Parallel and sequential algorithms for data mining using inductive logic. Knowledge and Information Systems, 3(4):405-421, 2001.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.4 , pp. 405-421
    • Skillicorn, D.1    Wang, Y.2
  • 41
    • 0032687672 scopus 로고    scopus 로고
    • Numerical reasoning with an ILP system capable of lazy evaluation and customised search
    • A. Srinivasan and R.C. Camacho. Numerical reasoning with an ILP system capable of lazy evaluation and customised search. Journal of Logic Programming, 40:185-214, 1999.
    • (1999) Journal of Logic Programming , vol.40 , pp. 185-214
    • Srinivasan, A.1    Camacho, R.C.2
  • 42
    • 0030212927 scopus 로고    scopus 로고
    • Theories for mutagenicity: A study of first-order and feature based induction
    • A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Theories for mutagenicity: A study of first-order and feature based induction. Artificial Intelligence, 85(1,2):277-299, 1996.
    • (1996) Artificial Intelligence , vol.85 , Issue.1-2 , pp. 277-299
    • Srinivasan, A.1    Muggleton, S.2    King, R.3    Sternberg, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.