메뉴 건너뛰기




Volumn 47, Issue 2, 2004, Pages 137-150

An exploration of the uncertainty relation satisfied by BP network learning ability and generalization ability

Author keywords

BP network; Generalization ability; Learning ability; Network structure optimization; Overfit relation

Indexed keywords


EID: 24944472658     PISSN: 10092757     EISSN: None     Source Type: Journal    
DOI: 10.1360/02yf0331     Document Type: Article
Times cited : (7)

References (20)
  • 1
    • 0002127281 scopus 로고
    • What size net gives valid generalization?
    • San Mateo, CA
    • Baum, E. B., Haussler, D., What size net gives valid generalization? NIPSI, 1989, San Mateo, CA, 81-90.
    • (1989) NIPSI , pp. 81-90
    • Baum, E.B.1    Haussler, D.2
  • 2
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning system
    • San Mateo, CA
    • Moody, J. E., The effective number of parameters: An analysis of generalization and regularization in nonlinear learning system, NIPS 4,1992, San Mateo, CA, 847-854.
    • (1992) NIPS , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 3
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • Barron, A. R., Approximation and estimation bounds for artificial neural networks, Machine Learning, 1994, (14): 115-133.
    • (1994) Machine Learning , Issue.14 , pp. 115-133
    • Barron, A.R.1
  • 4
    • 0001942829 scopus 로고
    • Neural networks and bias/variance dilemma
    • Geman, S., Neural networks and bias/variance dilemma. Neural Computation, 1992, (4): 1-58.
    • (1992) Neural Computation , Issue.4 , pp. 1-58
    • Geman, S.1
  • 6
    • 0031236925 scopus 로고    scopus 로고
    • A symptotic statistical theory of overtraining and cross-validation
    • Amari, S., Murata, N., Muller, K. R. et al., A symptotic statistical theory of overtraining and cross-validation, IEEE Trans. Neural Networks, 1997, 8(5): 985-996.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.5 , pp. 985-996
    • Amari, S.1    Murata, N.2    Muller, K.R.3
  • 7
    • 0001927486 scopus 로고
    • Temporal evolution of generalization during learning in linear networks
    • Baldi, P., Temporal evolution of generalization during learning in linear networks, Neural Computation, 1991, (3):589-603.
    • (1991) Neural Computation , Issue.3 , pp. 589-603
    • Baldi, P.1
  • 8
    • 0030111129 scopus 로고    scopus 로고
    • Network generalization differences quantified
    • Partridge, D., Network generalization differences quantified, Neural Networks, 1996, 9(2): 263-271.
    • (1996) Neural Networks , vol.9 , Issue.2 , pp. 263-271
    • Partridge, D.1
  • 9
    • 0027226702 scopus 로고
    • The problem of the number of samples for training multiple-layered network
    • Zhang Hongbin, The problem of the number of samples for training multiple-layered network. Automation Academic Journal, 1993, 19(1): 71-77.
    • (1993) Automation Academic Journal , vol.19 , Issue.1 , pp. 71-77
    • Zhang, H.1
  • 10
    • 0035502804 scopus 로고    scopus 로고
    • The generalization theory and generalization method of neural network
    • Wei Haikun, Xu Sixin, Song Wenzhong, The generalization theory and generalization method of neural network, Automation Academic Journal, 2001, 27(6): 806-815.
    • (2001) Automation Academic Journal , vol.27 , Issue.6 , pp. 806-815
    • Wei, H.1    Xu, S.2    Song, W.3
  • 11
    • 0029302005 scopus 로고
    • The capacity, learning and computational complexity of artificial neural network
    • Yan Pingfan, The capacity, learning and computational complexity of artificial neural network, Electronics Academic Journal, 1995, 23(4): 63-67.
    • (1995) Electronics Academic Journal , vol.23 , Issue.4 , pp. 63-67
    • Yan, P.1
  • 12
    • 0035279530 scopus 로고    scopus 로고
    • Research on the improvement of BP network generalization ability
    • Wang Hui, He Xingui, Research on the improvement of BP network generalization ability. System Engineering and Electronic Technology, 2001, 23(3): 85-87, 101.
    • (2001) System Engineering and Electronic Technology , vol.23 , Issue.3 , pp. 85-87
    • Wang, H.1    He, X.2
  • 13
    • 0037583544 scopus 로고    scopus 로고
    • System analysis of the generalization ability of feed forward neural network
    • Jiang Xuejun, Tang Huanwen, System analysis of the generalization ability of feed forward neural network, System Engineering Theory and Practice, 2000, 20(8): 38-40.
    • (2000) System Engineering Theory and Practice , vol.20 , Issue.8 , pp. 38-40
    • Jiang, X.1    Tang, H.2
  • 14
    • 0032217633 scopus 로고    scopus 로고
    • Some practical methods for improving the extension ability of feed forward neural network
    • Peng Hanchuan, Gan Qiang, Wei Yu, Some practical methods for improving the extension ability of feed forward neural network, Acta Electronica Sinica, 1998, 26(4): 116-119.
    • (1998) Acta Electronica Sinica , vol.26 , Issue.4 , pp. 116-119
    • Peng, H.1    Gan, Q.2    Wei, Y.3
  • 15
    • 0024481660 scopus 로고
    • Information uncertainty principle
    • Zha Youliang, Information uncertainty principle, Chinese Science Bulletin, 1989, 34(1): 86-87.
    • (1989) Chinese Science Bulletin , vol.34 , Issue.1 , pp. 86-87
    • Zha, Y.1
  • 17
    • 3042671943 scopus 로고    scopus 로고
    • Uncertainty principle and its implications and inspirations
    • Li Jianping, Uncertainty principle and its implications and inspirations. Journal of Chinese Academy of Sciences, 2000, 15(6): 428-430.
    • (2000) Journal of Chinese Academy of Sciences , vol.15 , Issue.6 , pp. 428-430
    • Li, J.1
  • 18
    • 70350533157 scopus 로고    scopus 로고
    • Calculation uncertainty principle of non-linear differential equation- II. Theoretical analysis
    • Li Jianping, Zeng Qingcun, Qiu Jifan, Calculation uncertainty principle of non-linear differential equation- II. Theoretical analysis, Science in China, Vol. E, 2000, 30(6): 550-567.
    • (2000) Science in China , vol.30 E , Issue.6 , pp. 550-567
    • Li, J.1    Zeng, Q.2    Qiu, J.3
  • 19
    • 24944576127 scopus 로고
    • Uncertainty principle and neural network used in signal restoration
    • Yan Pingfan, Uncertainty principle and neural network used in signal restoration, Signal Processing, 1991, 7(2): 71-76.
    • (1991) Signal Processing , vol.7 , Issue.2 , pp. 71-76
    • Yan, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.