-
1
-
-
0035839878
-
Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope
-
Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., Yamanaka, S., Tsuji, M., and Nosaka, T., 2001, "Nanotweezers Consisting of Carbon Nanotubes Operating in an Atomic Force Microscope," Appl. Phys. Lett., 79, pp. 1691-1693.
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 1691-1693
-
-
Akita, S.1
Nakayama, Y.2
Mizooka, S.3
Takano, Y.4
Okawa, T.5
Miyatake, Y.6
Yamanaka, S.7
Tsuji, M.8
Nosaka, T.9
-
2
-
-
0032787499
-
Nanotube nanotweezers
-
Kim, P., and Lieber, C. M., 1999, "Nanotube Nanotweezers," Science, 126, pp. 2148-2150.
-
(1999)
Science
, vol.126
, pp. 2148-2150
-
-
Kim, P.1
Lieber, C.M.2
-
3
-
-
0034617249
-
Carbon nanotube-based nonvolatile random access memory for molecular computing
-
Rueckes, T., Kim, K., Joslevich, E., Tseng, G. Y., Cheung, C., and Lieber, C. M., 2000, "Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing," Science, 289, pp. 94-97.
-
(2000)
Science
, vol.289
, pp. 94-97
-
-
Rueckes, T.1
Kim, K.2
Joslevich, E.3
Tseng, G.Y.4
Cheung, C.5
Lieber, C.M.6
-
4
-
-
0037463242
-
A carbon-nanotube-based nanorelay
-
Kinaret, J., Nord, T., and Viefers, S., 2003, "A Carbon-Nanotube-Based Nanorelay," Appl. Phys. Lett., 82, pp. 1287-1289.
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 1287-1289
-
-
Kinaret, J.1
Nord, T.2
Viefers, S.3
-
5
-
-
0043268003
-
Rotational actuator based on carbon nanotubes
-
Fennlmore, M., Yuzvlnsky, T. D., Han, W. Q., Fuhrer, M. S., Cummings, J., and Zettl, A., 2003, "Rotational Actuator Based on Carbon Nanotubes," Nature (London), 424, pp. 408-410.
-
(2003)
Nature (London)
, vol.424
, pp. 408-410
-
-
Fennlmore, M.1
Yuzvlnsky, T.D.2
Han, W.Q.3
Fuhrer, M.S.4
Cummings, J.5
Zettl, A.6
-
6
-
-
4043142033
-
Feedback controlled nanocantilever NEMS device
-
Ke, C.-H., and Espinosa, H. D, 2004, "Feedback Controlled Nanocantilever NEMS Device," Appl. Phys. Lett., 85, pp. 681-683.
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 681-683
-
-
Ke, C.-H.1
Espinosa, H.D.2
-
7
-
-
0041823777
-
Nanowire-based very-high-frequency electro-mechanical resonator
-
Husain, A., Hone, J., Postma, H. W. Ch., Huang, X. M. H., Drake, T., Barbic, M., Scherer, A., and Roukes, M. L., 2003, "Nanowire-Based Very-High-Frequency Electro-Mechanical Resonator," Appl. Phys. Lett., 83, pp. 1240-1242.
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 1240-1242
-
-
Husain, A.1
Hone, J.2
Postma, H.W.Ch.3
Huang, X.M.H.4
Drake, T.5
Barbic, M.6
Scherer, A.7
Roukes, M.L.8
-
8
-
-
2942650906
-
Bistable nanoelectromechanical devices
-
Ziegler, K. J., Lyons, D. M., Holmes, J. D., Erts, D., Polyakov, B., Olin, H., Svensson, K., and Olsson, E., 2004, "Bistable Nanoelectromechanical Devices," Appl. Phys. Lett., 84, pp. 4074-4076.
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 4074-4076
-
-
Ziegler, K.J.1
Lyons, D.M.2
Holmes, J.D.3
Erts, D.4
Polyakov, B.5
Olin, H.6
Svensson, K.7
Olsson, E.8
-
9
-
-
0036472159
-
Calculation of pull-in voltage for carbon-nanotube-based nanoelectromechanical switches
-
Dequesnes, M., Rotkin, S. V., and Aluru, N. R., 2002, "Calculation of Pull-in Voltage for Carbon-Nanotube-Based Nanoelectromechanical Switches," Nano-technology, 13, pp. 120-131.
-
(2002)
Nano-technology
, vol.13
, pp. 120-131
-
-
Dequesnes, M.1
Rotkin, S.V.2
Aluru, N.R.3
-
10
-
-
0000506844
-
Fullerene nanotube in electric fields
-
Lou, L., Nordlander, P., and Smalley, R. E., 1995, "Fullerene Nanotube in Electric Fields," Phys. Rev. B, 52, pp. 1429-1432.
-
(1995)
Phys. Rev. B
, vol.52
, pp. 1429-1432
-
-
Lou, L.1
Nordlander, P.2
Smalley, R.E.3
-
11
-
-
0037444839
-
Electrostatic of conducting nanocylinder
-
Krcmar, M., Saslow, W. M., and Zangwill, A., 2003, "Electrostatic of Conducting Nanocylinder," J. Appl. Phys., 93, pp. 3495-3500.
-
(2003)
J. Appl. Phys.
, vol.93
, pp. 3495-3500
-
-
Krcmar, M.1
Saslow, W.M.2
Zangwill, A.3
-
12
-
-
0000744536
-
Nanotube devices: A microscopic model
-
Bulashevich, K. A., and Rotkin, S. V., 2002, "Nanotube Devices: A Microscopic Model," JETP Lett., 75, pp.205-209.
-
(2002)
JETP Lett.
, vol.75
, pp. 205-209
-
-
Bulashevich, K.A.1
Rotkin, S.V.2
-
13
-
-
0042141221
-
Atomic capacitance of a nanotube electrostatic device
-
Rotkin, S. V., Shrivastava, V., Bulashevich, K. A., and Aluru, N. R., "Atomic Capacitance of a Nanotube Electrostatic Device," 2002, Int. J. Nanosci., 1, pp. 337-346.
-
(2002)
Int. J. Nanosci.
, vol.1
, pp. 337-346
-
-
Rotkin, S.V.1
Shrivastava, V.2
Bulashevich, K.A.3
Aluru, N.R.4
-
14
-
-
0037122333
-
Charge distribution and stability of charged carbon nanotube
-
Keblinski, P., Nayak, S. K., Zapol, P., and Ajayan, P. M., 2002, "Charge Distribution and Stability of Charged Carbon Nanotube," Phys. Rev. Lett., 89, 255503.
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 255503
-
-
Keblinski, P.1
Nayak, S.K.2
Zapol, P.3
Ajayan, P.M.4
-
15
-
-
0004205540
-
-
McGraw-Hill, New York
-
Hayt, W., and Buck, J., 2001, Engineering Electromagnetics, 6th ed. McGraw-Hill, New York.
-
(2001)
Engineering Electromagnetics, 6th Ed.
-
-
Hayt, W.1
Buck, J.2
-
16
-
-
24744452217
-
Numerical analysis of nanotube based NEMS devices-part II: Role of finite kinematics, stretching and charge concentration
-
Ke, C.-H., Espinosa, H. D., and Pugno, N., 2005, "Numerical Analysis of Nanotube Based NEMS Devices-Part II: Role of Finite Kinematics, Stretching and Charge Concentration," ASME J. Appl. Mech., 72, pp. 726-731.
-
(2005)
ASME J. Appl. Mech.
, vol.72
, pp. 726-731
-
-
Ke, C.-H.1
Espinosa, H.D.2
Pugno, N.3
|