-
1
-
-
0000092002
-
-
J. A. Strascio and D. M. Eigler, Science 254, 1319 (1991); J. K. Gimzewski and C. Joachim, Science 283, 1683 (1999).
-
(1991)
Science
, vol.254
, pp. 1319
-
-
Strascio, J.A.1
Eigler, D.M.2
-
2
-
-
0033548713
-
-
J. A. Strascio and D. M. Eigler, Science 254, 1319 (1991); J. K. Gimzewski and C. Joachim, Science 283, 1683 (1999).
-
(1999)
Science
, vol.283
, pp. 1683
-
-
Gimzewski, J.K.1
Joachim, C.2
-
3
-
-
0000406346
-
-
Y. Kim and C. M. Lieber, Science 257, 375 (1992); M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262, 218 (1993); A. Yazdani, D. M. Eigler, N. D. Lang, Science 272, 1921 (1996).
-
(1992)
Science
, vol.257
, pp. 375
-
-
Kim, Y.1
Lieber, C.M.2
-
4
-
-
0039809542
-
-
Y. Kim and C. M. Lieber, Science 257, 375 (1992); M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262, 218 (1993); A. Yazdani, D. M. Eigler, N. D. Lang, Science 272, 1921 (1996).
-
(1993)
Science
, vol.262
, pp. 218
-
-
Crommie, M.F.1
Lutz, C.P.2
Eigler, D.M.3
-
5
-
-
0030037263
-
-
Y. Kim and C. M. Lieber, Science 257, 375 (1992); M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262, 218 (1993); A. Yazdani, D. M. Eigler, N. D. Lang, Science 272, 1921 (1996).
-
(1996)
Science
, vol.272
, pp. 1921
-
-
Yazdani, A.1
Eigler, D.M.2
Lang, N.D.3
-
11
-
-
0030863666
-
-
M. R. Falvo et al., Nature 389, 582 (1997); T. Hertel, R. Martel, P. Avouris, J. Phys. Chem. B 102, 910 (1998).
-
(1997)
Nature
, vol.389
, pp. 582
-
-
Falvo, M.R.1
-
12
-
-
0032484754
-
-
M. R. Falvo et al., Nature 389, 582 (1997); T. Hertel, R. Martel, P. Avouris, J. Phys. Chem. B 102, 910 (1998).
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 910
-
-
Hertel, T.1
Martel, R.2
Avouris, P.3
-
13
-
-
0030892702
-
-
M. Bockrath et al., Science 275, 1922 (1997); S. J. Tans et al., Nature 386, 474 (1997)
-
(1997)
Science
, vol.275
, pp. 1922
-
-
Bockrath, M.1
-
14
-
-
0007178040
-
-
M. Bockrath et al., Science 275, 1922 (1997); S. J. Tans et al., Nature 386, 474 (1997)
-
(1997)
Nature
, vol.386
, pp. 474
-
-
Tans, S.J.1
-
15
-
-
0344821985
-
-
note
-
Tapered glass structures were prepared from 1-mm outside diameter glass tubes (B100-58-10, Sutter Instrument, Novato, CA) using a commercial pipette puller (Sutter Instrument). Five nanometers of Cr and 40 nm of Au were evaporated on one side of the tapered glass structure, then the glass was rotated 180° and the deposition was repeated on the other side. Because the side surfaces of the glass have a small cross section, the deposited metal forms thick films on the top and bottom (after 180° rotation) and thinner, eventually discontinuous, films at the sides.
-
-
-
-
16
-
-
0029911943
-
-
H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996); S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, J. Am. Chem. Soc. 120, 603 (1998); S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 394, 52 (1998); S. S. Wong et al., Appl. Phys. Lett. 73, 3465 (1998).
-
(1996)
Nature
, vol.384
, pp. 147
-
-
Dai, H.1
Hafner, J.H.2
Rinzler, A.G.3
Colbert, D.T.4
Smalley, R.E.5
-
17
-
-
0032573868
-
-
H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996); S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, J. Am. Chem. Soc. 120, 603 (1998); S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 394, 52 (1998); S. S. Wong et al., Appl. Phys. Lett. 73, 3465 (1998).
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 603
-
-
Wong, S.S.1
Harper, J.D.2
Lansbury, P.T.3
Lieber, C.M.4
-
18
-
-
0032474758
-
-
H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996); S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, J. Am. Chem. Soc. 120, 603 (1998); S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 394, 52 (1998); S. S. Wong et al., Appl. Phys. Lett. 73, 3465 (1998).
-
(1998)
Nature
, vol.394
, pp. 52
-
-
Wong, S.S.1
Joselevich, E.2
Woolley, A.T.3
Cheung, C.L.4
Lieber, C.M.5
-
19
-
-
0000870782
-
-
H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996); S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, J. Am. Chem. Soc. 120, 603 (1998); S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 394, 52 (1998); S. S. Wong et al., Appl. Phys. Lett. 73, 3465 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 3465
-
-
Wong, S.S.1
-
20
-
-
0345253230
-
-
note
-
The time required to attach nanotubes to the electrodes and make a working device is typically less than 2 hours. The overall yield of this process, determined from all of our experiments, is >50%.
-
-
-
-
22
-
-
0345253226
-
-
note
-
Calculations show that the potential energy versus separation typically has two minima corresponding to the open/relaxed and contact structures; that is, the system is bistable (P. Kim, K. Kim, T. Rueckes, E. Joselevich, C. M. Lieber, unpublished results).
-
-
-
-
23
-
-
0344821983
-
-
note
-
The spheres used were uniformly dyed polystyrene microspheres 0.31 μm in diameter (XC Estapor, Bangs Laboratories, Fishers, IN).
-
-
-
-
24
-
-
0344821982
-
-
note
-
The grabbing force exerted on the spheres by the nanotweezers is ≥10 nN. Without the applied voltage to close the nanotweezers' arms, <10% (20 trials) of the experiments resulted in the removal of a polystyrene sphere. This shows that the adhesion force is generally not sufficient to enable sphere manipulation. However, when the applied voltage was used to close the nanotweezers on a polystyrene sphere, >80% of the experiments resulted in the removal of the spheres.
-
-
-
-
25
-
-
0345684792
-
-
note
-
The nanoclusters were composed of β-SiC powder (99.8%, Johnson Matthey, Ward Hill, MA) and had an average diameter of 500 nm. The SiC contained 0.2% N and was thus heavily doped.
-
-
-
-
28
-
-
0029352194
-
-
note
-
-4 ohm · cm determined in a previous study of heavily N-doped β-SiC [W. Hellmich, G. Muller, G. Krotz, G. Derst, S. Kalbitzer, Appl. Phys. A 61, 193 (1995)] yields a resistance, 100 megohm, that is comparable to our measured value.
-
-
-
-
30
-
-
0344390260
-
-
note
-
The transport measurements were performed by recording at least five sets of I-V curves. After averaging these curves, the resistance of the device was extracted from linear fits of the curves.
-
-
-
-
32
-
-
4243855607
-
-
Q. Niu, M. C. Chang, C. K. Shih, Phys. Rev. B 51, 5502 (1995); M. E. Flatte and J. M. Byers, Phys. Rev. B 53, 10536 (1996).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 5502
-
-
Q, N.1
Chang, M.C.2
Shih, C.K.3
-
33
-
-
0040084190
-
-
Q. Niu, M. C. Chang, C. K. Shih, Phys. Rev. B 51, 5502 (1995); M. E. Flatte and J. M. Byers, Phys. Rev. B 53, 10536 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 10536
-
-
Flatte, M.E.1
Byers, J.M.2
-
34
-
-
0033591304
-
-
note
-
Electromechanical actuation of the nanotweezers is not ideal for aqueous solution work. Several approaches can be used to overcome potential problems. First, the actuating portion of the tweezers could be removed from solution because of the very high aspect ratio of carbon nanotubes. Second, it is possible to reduce the operating voltage to very low levels (0.1 V) at which electrochemical processes should not be a problem. Using Eq. 1, we find that nanotweezers with nanotubes 5 μm long and 10 nm in diameter will close at 0.1 V. Third, it may be possible to exploit other mechanisms for closing the nanotweezers [R. H. Baughman et al., Science 284, 1340 (1999)].
-
-
-
-
35
-
-
0345684789
-
-
note
-
We thank S. S. Wong and L. Venkataraman for helpful discussion and J. H. Hafner for providing MWNT samples. This work was supported by NSF.
-
-
-
|