메뉴 건너뛰기




Volumn 3, Issue 6, 1999, Pages 453-474

Maintaining the performance of a learned classifier under concept drift

Author keywords

Batches; Classification; Concept drift; Decision trees; Incremental learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES;

EID: 0013224752     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-1999-3604     Document Type: Article
Times cited : (50)

References (12)
  • 3
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimising disagreements
    • D.P. Hembold, P.M. Long, Tracking drifting concepts by minimising disagreements, Machine Learning 14 (1) (1994) 27-45.
    • (1994) Machine Learning , vol.14 , Issue.1 , pp. 27-45
    • Hembold, D.P.1    Long, P.M.2
  • 4
    • 30244445035 scopus 로고
    • Artificial universes-towards a systematic approach to evaluating algorithms which learn from examples
    • Morgan Kaufmann, San Mateo, CA
    • R.J. Hickey, Artificial universes-towards a systematic approach to evaluating algorithms which learn from examples, in: Proceedings of Ninth International Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, 1992, pp. 196-205.
    • (1992) Proceedings of Ninth International Conference on Machine Learning , pp. 196-205
    • Hickey, R.J.1
  • 5
    • 0030125436 scopus 로고    scopus 로고
    • Noise modelling and evaluating learning from examples
    • R.J. Hickey, Noise modelling and evaluating learning from examples, Artificial Intelligence Journal 82 (1996) 157-179.
    • (1996) Artificial Intelligence Journal , vol.82 , pp. 157-179
    • Hickey, R.J.1
  • 6
    • 22944487509 scopus 로고
    • Concept versioning: A methodology for tracking evolutionary concept drift in dynamic concept systems
    • Wiley, Chichester
    • M. Klenner, U. Hahn, Concept versioning: a methodology for tracking evolutionary concept drift in dynamic concept systems, in: Proceedings of Eleventh European Conference on Artificial Intelligence, Wiley, Chichester, 1994, pp. 473-477.
    • (1994) Proceedings of Eleventh European Conference on Artificial Intelligence , pp. 473-477
    • Klenner, M.1    Hahn, U.2
  • 7
    • 0028405109 scopus 로고
    • The importance of attribute selection measures in decision tree induction
    • W.Z. Liu, A.P. White, The importance of attribute selection measures in decision tree induction, Machine Learning 15 (1) (1994) 25-41.
    • (1994) Machine Learning , vol.15 , Issue.1 , pp. 25-41
    • Liu, W.Z.1    White, A.P.2
  • 8
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986) 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 9
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • J.e. Schlinuner, R.H. Granger, Incremental learning from noisy data, Machine Learning 1 (3) (1986) 317-354.
    • (1986) Machine Learning , vol.1 , Issue.3 , pp. 317-354
    • Schlinuner, J.E.1    Granger, R.H.2
  • 10
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • P.E. Utgoff, Decision tree induction based on efficient tree restructuring, Machine Learning 29 (1) (1997) 5-44.
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1
  • 11
    • 0031164523 scopus 로고    scopus 로고
    • Tracking changes through meta-learning
    • G. Widmer, Tracking changes through meta-learning, Machine Learning 27 (3) (1997) 259-286.
    • (1997) Machine Learning , vol.27 , Issue.3 , pp. 259-286
    • Widmer, G.1
  • 12
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning 23 (1) (1996) 69-101.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.