-
1
-
-
0030230616
-
Frequency domain theorem (Yakubovich-Kalman lemma) in the control theory
-
N. E. Barabanov, G. A. Leonov, A. H. Gelig, A. S. Matveev, V. B. Smirnova, and A. L. Fradkov, "Frequency domain theorem (Yakubovich-Kalman lemma) in the control theory," Automat. Remote Control, no. 10, pp. 3-40, 1996.
-
(1996)
Automat. Remote Control
, Issue.10
, pp. 3-40
-
-
Barabanov, N.E.1
Leonov, G.A.2
Gelig, A.H.3
Matveev, A.S.4
Smirnova, V.B.5
Fradkov, A.L.6
-
2
-
-
0034472063
-
The state space extension method in the theory of absolute stability
-
Dec.
-
N. E. Barabanov, "The state space extension method in the theory of absolute stability," IEEE Trans. Automat. Contr., vol. 45, pp. 2335-2338, Dec. 2000.
-
(2000)
IEEE Trans. Automat. Contr.
, vol.45
, pp. 2335-2338
-
-
Barabanov, N.E.1
-
3
-
-
2442709928
-
Matrix pencils and extended algebraic Riccati equations
-
N. Barabanov and R. Ortega, "Matrix pencils and extended algebraic Riccati equations," Eur. J. Control, vol. 8, no. 3, pp. 251-264, 2002.
-
(2002)
Eur. J. Control
, vol.8
, Issue.3
, pp. 251-264
-
-
Barabanov, N.1
Ortega, R.2
-
4
-
-
0000443275
-
Spectral factorization via Hermitian pencils
-
D. J. Clements and K. Glover, "Spectral factorization via Hermitian pencils," Linear Alg. Applicat., vol. 122-124, pp. 797-846, 1989.
-
(1989)
Linear Alg. Applicat.
, vol.122-124
, pp. 797-846
-
-
Clements, D.J.1
Glover, K.2
-
5
-
-
0034342184
-
A state space approach to indefinite spectral factorization
-
D. J. Clements, "A state space approach to indefinite spectral factorization," SIAM J. Matrix Anal. Applicat., vol. 21, no. 3, pp. 743-767, 2000.
-
(2000)
SIAM J. Matrix Anal. Applicat.
, vol.21
, Issue.3
, pp. 743-767
-
-
Clements, D.J.1
-
6
-
-
4243196717
-
Generalized continuous-time Riccati theory
-
V. Ionescu and C. Oara, "Generalized continuous-time Riccati theory," Linear Alg. Applicat., vol. 232, pp. 111-130, 1996.
-
(1996)
Linear Alg. Applicat.
, vol.232
, pp. 111-130
-
-
Ionescu, V.1
Oara, C.2
-
7
-
-
0000902795
-
Canonical forms for hamiltonian and symplectic matrices and pencils
-
W.-W. Lin, V. Mehrmann, and H. Xu, "Canonical forms for hamiltonian and symplectic matrices and pencils," Linear Alg. Applicat., vol. 302-303, pp. 469-533, 1999.
-
(1999)
Linear Alg. Applicat.
, vol.302-303
, pp. 469-533
-
-
Lin, W.-W.1
Mehrmann, V.2
Xu, H.3
-
9
-
-
0036400808
-
Existence, uniqueness, and parametrization of lagrangian invariant subspaces
-
G. Freiling, V. Mehrmann, and H. Xu, "Existence, uniqueness, and parametrization of lagrangian invariant subspaces," SIAM J. Matrix Anal. Applicat., vol. 23, no. 4, pp. 1045-1069, 2002.
-
(2002)
SIAM J. Matrix Anal. Applicat.
, vol.23
, Issue.4
, pp. 1045-1069
-
-
Freiling, G.1
Mehrmann, V.2
Xu, H.3
-
10
-
-
0001750429
-
The characteristic polynomial of a principal subpencil of an Hermitian matrix pencil
-
R. C. Tompson, "The characteristic polynomial of a principal subpencil of an Hermitian matrix pencil," Linear Alg. Applicat., vol. 14, pp. 135-177, 1976.
-
(1976)
Linear Alg. Applicat.
, vol.14
, pp. 135-177
-
-
Tompson, R.C.1
|