메뉴 건너뛰기




Volumn 302-303, Issue , 1999, Pages 469-533

Canonical forms for Hamiltonian and symplectic matrices and pencils

Author keywords

Algebraic Riccati equation; Eigenvalue problem; Hamiltonian pencil (matrix); Jordan canonical form; Kronecker canonical form; Linear quadratic control; Symplectic pencil (matrix)

Indexed keywords


EID: 0000902795     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0024-3795(99)00191-3     Document Type: Article
Times cited : (108)

References (28)
  • 1
    • 0031272504 scopus 로고    scopus 로고
    • A new method for computing the stable invariant subspace of a real Hamiltonian matrix
    • P. Benner, V. Mehrmann, H.-G. Xu, A new method for computing the stable invariant subspace of a real Hamiltonian matrix, J. Comput. Appl. Math. 86 (1997) 17-43.
    • (1997) J. Comput. Appl. Math. , vol.86 , pp. 17-43
    • Benner, P.1    Mehrmann, V.2    Xu, H.-G.3
  • 3
    • 38249039967 scopus 로고
    • Matrix factorization for symplectic methods
    • A. Bunse-Gerstner, Matrix factorization for symplectic methods, Linear Algebra Appl. 83 (1986) 49-77.
    • (1986) Linear Algebra Appl. , vol.83 , pp. 49-77
    • Bunse-Gerstner, A.1
  • 6
    • 38149012697 scopus 로고
    • The solution of the matrix equation AXB - CXD = Y and (YA - DZ, YC - BZ) = (E, F)
    • K.-W. Chu, The solution of the matrix equation AXB - CXD = Y and (YA - DZ, YC - BZ) = (E, F), Linear Alg. Appl. 93 (1987) 93-105.
    • (1987) Linear Alg. Appl. , vol.93 , pp. 93-105
    • Chu, K.-W.1
  • 7
    • 36749118959 scopus 로고
    • Normal forms of elements of classical real and complex Lie and Jordan algebras
    • D.Z. Djokovic, J. Patera, P. Winternitz, H. Zassenhaus, Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys. 24 (1983) 1363-1374.
    • (1983) J. Math. Phys. , vol.24 , pp. 1363-1374
    • Djokovic, D.Z.1    Patera, J.2    Winternitz, P.3    Zassenhaus, H.4
  • 8
    • 0003227856 scopus 로고
    • Matrices and indefinite scalar products
    • Birkhäuser Verlag, Basel
    • I. Gohberg, P. Lancaster, L. Rodman, Matrices and indefinite scalar products, Operator Theory, vol. 8, Birkhäuser Verlag, Basel, 1983.
    • (1983) Operator Theory , vol.8
    • Gohberg, I.1    Lancaster, P.2    Rodman, L.3
  • 9
    • 0009445440 scopus 로고    scopus 로고
    • Canonical forms for real symplectic matrix pencils
    • A. Ferrante, B.C. Levy, Canonical forms for real symplectic matrix pencils, Linear Algebra Appl. 274 (1998) 259-300.
    • (1998) Linear Algebra Appl. , vol.274 , pp. 259-300
    • Ferrante, A.1    Levy, B.C.2
  • 18
    • 0000105740 scopus 로고
    • Canonical forms for symplectic and Hamiltonian matrices
    • A.J. Laub, K. Meyer, Canonical forms for symplectic and Hamiltonian matrices, Celestial Mechanics 9 (1974) 213-238.
    • (1974) Celestial Mechanics , vol.9 , pp. 213-238
    • Laub, A.J.1    Meyer, K.2
  • 21
    • 21344456693 scopus 로고    scopus 로고
    • A step towards a unified treatment of continous and discrete time control problems
    • V. Mehrmann, A step towards a unified treatment of continous and discrete time control problems, Linear Algebra Appl. 241-243 (1996) 749-779.
    • (1996) Linear Algebra Appl. , vol.241-243 , pp. 749-779
    • Mehrmann, V.1
  • 22
    • 33646526859 scopus 로고
    • Solution of large matrix equations which occur in response theory
    • J. Olson, H. Jensen, P. Jorgensen, Solution of large matrix equations which occur in response theory, J. Comp. Phys. 74 (1988) 65-282.
    • (1988) J. Comp. Phys. , vol.74 , pp. 65-282
    • Olson, J.1    Jensen, H.2    Jorgensen, P.3
  • 23
    • 49049146869 scopus 로고
    • A Schur decomposition for Hamiltonian matrices
    • C.C. Paige, C.F. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl. 41 (1981) 11-32.
    • (1981) Linear Algebra Appl. , vol.41 , pp. 11-32
    • Paige, C.C.1    Van Loan, C.F.2
  • 24
    • 0001750429 scopus 로고
    • The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil
    • R.C. Thompson, The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil, Linear Algebra Appl. 14 (1976) 136-177.
    • (1976) Linear Algebra Appl. , vol.14 , pp. 136-177
    • Thompson, R.C.1
  • 25
    • 0001625882 scopus 로고
    • Pencils of complex and real symmetric and skew symmetric matrices
    • R.C. Thompson, Pencils of complex and real symmetric and skew symmetric matrices, Linear Algebra Appl. 147 (1991) 323-371.
    • (1991) Linear Algebra Appl. , vol.147 , pp. 323-371
    • Thompson, R.C.1
  • 27
    • 0006836426 scopus 로고
    • The algebraic Riccati equation without complete controllability
    • H.K. Wimmer, The algebraic Riccati equation without complete controllability, SIAM J. Algebra Disc. Meth. 3 (1982) 1-12.
    • (1982) SIAM J. Algebra Disc. Meth. , vol.3 , pp. 1-12
    • Wimmer, H.K.1
  • 28
    • 0001102105 scopus 로고
    • Normal forms of symplectic pencils and the discrete-time algebraic Riccati equation
    • H.K. Wimmer, Normal forms of symplectic pencils and the discrete-time algebraic Riccati equation, Linear Algebra Appl. 147 (1991) 411-440.
    • (1991) Linear Algebra Appl. , vol.147 , pp. 411-440
    • Wimmer, H.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.