메뉴 건너뛰기




Volumn 232, Issue 1-3, 1996, Pages 111-130

Generalized continuous-time Riccati theory

Author keywords

[No Author keywords available]

Indexed keywords


EID: 4243196717     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/0024-3795(94)00035-2     Document Type: Article
Times cited : (28)

References (16)
  • 3
    • 0002048229 scopus 로고
    • Spectral and inner-outer factorization of rational matrices
    • T. Chen and B. A. Francis, Spectral and inner-outer factorization of rational matrices, SIAM J. Matrix Anal. Appl. 10(1):1-17 (1989).
    • (1989) SIAM J. Matrix Anal. Appl. , vol.10 , Issue.1 , pp. 1-17
    • Chen, T.1    Francis, B.A.2
  • 4
    • 0000769280 scopus 로고
    • The computation of Kronecker's canonical form of a singular pencil
    • P. van Dooren, The computation of Kronecker's canonical form of a singular pencil, Linear Algebra Appl. 27:103-141 (1979).
    • (1979) Linear Algebra Appl. , vol.27 , pp. 103-141
    • Van Dooren, P.1
  • 5
    • 0002095206 scopus 로고
    • Reducing subspaces: Definitions, properties and algorithms
    • Springer-Verlag
    • P. van Dooren, Reducing subspaces: Definitions, properties and algorithms, in Lecture Notes in Math. 973, Springer-Verlag, 1983, pp. 58-73.
    • (1983) Lecture Notes in Math. , vol.973 , pp. 58-73
    • Van Dooren, P.1
  • 7
    • 0027303443 scopus 로고
    • Generalized discrete-time Popov-Yakubovich theory
    • A. Halanay and V. Ionescu, Generalized discrete-time Popov-Yakubovich theory, Systems Control Lett. 20:1-6 (1993).
    • (1993) Systems Control Lett. , vol.20 , pp. 1-6
    • Halanay, A.1    Ionescu, V.2
  • 8
    • 0001122178 scopus 로고
    • On computing the stabilizing solution of the discrete-time Riccati equation
    • V. Ionescu and M. Weiss, On computing the stabilizing solution of the discrete-time Riccati equation, Linear Algebra Appl. 174:229-238 (1992).
    • (1992) Linear Algebra Appl. , vol.174 , pp. 229-238
    • Ionescu, V.1    Weiss, M.2
  • 9
    • 0042709052 scopus 로고
    • Continuous and discrete-time riccati theory: A popov function approach
    • V. Ionescu and M. Weiss, Continuous and discrete-time Riccati theory: A Popov function approach, Linear Algebra Appl. 193:173-209 (1993).
    • (1993) Linear Algebra Appl. , vol.193 , pp. 173-209
    • Ionescu, V.1    Weiss, M.2
  • 10
    • 30244534953 scopus 로고
    • The constrained continuous-time algebraic Riccati equation
    • IFAC
    • V. Ionescu and M. Weiss, The constrained continuous-time algebraic Riccati equation, in Proceedings of 12th World Congress, IFAC, 2:525-528 (1993).
    • (1993) Proceedings of 12th World Congress , vol.2 , pp. 525-528
    • Ionescu, V.1    Weiss, M.2
  • 13
    • 0000501472 scopus 로고
    • Structural invariants of linear multivariable systems
    • A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control Optim. 11(3):446-465 (1973).
    • (1973) SIAM J. Control Optim. , vol.11 , Issue.3 , pp. 446-465
    • Morse, A.S.1
  • 14
    • 0001540094 scopus 로고
    • Proper deflating subspaces: Properties, algorithms and applications
    • C. Oarǎ, Proper deflating subspaces: Properties, algorithms and applications, Numer. Algorithms, 7:355-373 (1994).
    • (1994) Numer. Algorithms , vol.7 , pp. 355-373
    • Oarǎ, C.1
  • 15
    • 0028401207 scopus 로고
    • Spectral and inner-outer factorization in the general case through the constrained Riccati equation
    • M. Weiss, Spectral and inner-outer factorization in the general case through the constrained Riccati equation, IEEE Trans. Automat. Control, 39:677-681 (1994).
    • (1994) IEEE Trans. Automat. Control , vol.39 , pp. 677-681
    • Weiss, M.1
  • 16
    • 0011779750 scopus 로고
    • Linear multivariable control. A geometric approach
    • Springer-Verlag
    • W. M. Wonham, Linear Multivariable Control. A Geometric Approach, Lecture Notes in Econom. and Math. Systems 101, Springer-Verlag, 1974.
    • (1974) Lecture Notes in Econom. and Math. Systems , vol.101
    • Wonham, W.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.