-
1
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58.
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
2
-
-
0033748737
-
Measuring physical and mechanical properties of individual carbon nanotubes by in-situ TEM
-
Wang Z L, Poncharal P, and de Heer W A (2000) Measuring physical and mechanical properties of individual carbon nanotubes by in-situ TEM. J. Phys. Chem. Sol. 61: 1025-1030.
-
(2000)
J. Phys. Chem. Sol.
, vol.61
, pp. 1025-1030
-
-
Wang, Z.L.1
Poncharal, P.2
De Heer, W.A.3
-
3
-
-
2642660458
-
Electronic structure of atomically resolved carbon nanotubes
-
Wildöer J W G, Venema L C, Rinzler A G, Smalley R E, and Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391: 59-62.
-
(1998)
Nature
, vol.391
, pp. 59-62
-
-
Wildöer, J.W.G.1
Venema, L.C.2
Rinzler, A.G.3
Smalley, R.E.4
Dekker, C.5
-
5
-
-
0032549206
-
In-situ TEM and EELS studies of alkali-metal intercalation with single-walled carbon nanotubes
-
Suzuki S, Bower C, and Zhou O (1998) In-situ TEM and EELS studies of alkali-metal intercalation with single-walled carbon nanotubes. Chem. Phys. Lett. 285: 230-234.
-
(1998)
Chem. Phys. Lett.
, vol.285
, pp. 230-234
-
-
Suzuki, S.1
Bower, C.2
Zhou, O.3
-
7
-
-
0032741312
-
AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite
-
Biró L P, Márk G I, Gyulai J, Havancsák K, Lipp S, Lehrer C, Frey L, and Ryssel H (1999) AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite. Nucl. Instrum. Meth. Phys. Res. B 147: 142-147.
-
(1999)
Nucl. Instrum. Meth. Phys. Res. B
, vol.147
, pp. 142-147
-
-
Biró, L.P.1
Márk, G.I.2
Gyulai, J.3
Havancsák, K.4
Lipp, S.5
Lehrer, C.6
Frey, L.7
Ryssel, H.8
-
8
-
-
0032679329
-
SEM and HREM study of the internal structure of nanotube rich carbon arc cathodic deposits
-
Kiselev N A, Moravsky A P, Ormont A B, and Zakharov D N (1999) SEM and HREM study of the internal structure of nanotube rich carbon arc cathodic deposits. Carbon 37: 1093-1103.
-
(1999)
Carbon
, vol.37
, pp. 1093-1103
-
-
Kiselev, N.A.1
Moravsky, A.P.2
Ormont, A.B.3
Zakharov, D.N.4
-
9
-
-
0037034046
-
Carbon nanothermometer containing gallium
-
Gao Y and Bando Y (2002) Carbon nanothermometer containing gallium. Nature 415: 599.
-
(2002)
Nature
, vol.415
, pp. 599
-
-
Gao, Y.1
Bando, Y.2
-
10
-
-
0001506268
-
60 and higher fullerenes formed within arc-grown single walled carbon nanotubes
-
60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem. Phys. Lett. 316: 191-198.
-
(2000)
Chem. Phys. Lett.
, vol.316
, pp. 191-198
-
-
Sloan, J.1
Dunin-Borkowski, R.E.2
Hutchison, J.L.3
Coleman, K.S.4
Williams, V.C.5
Claridge, J.B.6
York, A.P.E.7
Xu, C.8
Bailey, S.R.9
Brown, G.10
Friedrichs, S.11
Green, M.L.H.12
-
11
-
-
0034505235
-
One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes
-
Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, and Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85: 5384-5387.
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 5384-5387
-
-
Hirahara, K.1
Suenaga, K.2
Bandow, S.3
Kato, H.4
Okazaki, T.5
Shinohara, H.6
Iijima, S.7
-
12
-
-
0002739312
-
Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes
-
Bandow S, Takizawa M, Hirahara K, Yudasaka M, and Iijima S (2001) Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337: 48-54.
-
(2001)
Chem. Phys. Lett.
, vol.337
, pp. 48-54
-
-
Bandow, S.1
Takizawa, M.2
Hirahara, K.3
Yudasaka, M.4
Iijima, S.5
-
14
-
-
0037177630
-
Metal-free production of high-quality multi-wall carbon nanotubes, in which the innermost nanotubes have a diameter of 0.4 nm
-
Koshio A, Yudasaka M, and Iijima S (2002) Metal-free production of high-quality multi-wall carbon nanotubes, in which the innermost nanotubes have a diameter of 0.4 nm. Chem. Phys. Lett. 356: 595-600.
-
(2002)
Chem. Phys. Lett.
, vol.356
, pp. 595-600
-
-
Koshio, A.1
Yudasaka, M.2
Iijima, S.3
-
15
-
-
0027911845
-
Opening carbon nanotubes with oxygen and implications for filling
-
Ajayan P M, Ebbesen T W, Ichihashi T, Iijima S, Tanigaki K, and Hiura H (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362: 522-525.
-
(1993)
Nature
, vol.362
, pp. 522-525
-
-
Ajayan, P.M.1
Ebbesen, T.W.2
Ichihashi, T.3
Iijima, S.4
Tanigaki, K.5
Hiura, H.6
-
16
-
-
0033591881
-
Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes
-
Pradhan B K, Kyotani T, and Tomita A (1999) Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem. Commun. 1317-1318.
-
(1999)
Chem. Commun.
, pp. 1317-1318
-
-
Pradhan, B.K.1
Kyotani, T.2
Tomita, A.3
-
17
-
-
0001356735
-
Electrochemical production of low-melting metal nanowires
-
Hsu W K, Li J, Terrones H, Terrones M, Groben N, Zhu Y Q, Trasobares S, Hare J P, Pickett C J, Kroto H W, and Walton D R M (1999) Electrochemical production of low-melting metal nanowires. Chem. Phys. Lett. 301: 159-166.
-
(1999)
Chem. Phys. Lett.
, vol.301
, pp. 159-166
-
-
Hsu, W.K.1
Li, J.2
Terrones, H.3
Terrones, M.4
Groben, N.5
Zhu, Y.Q.6
Trasobares, S.7
Hare, J.P.8
Pickett, C.J.9
Kroto, H.W.10
Walton, D.R.M.11
-
18
-
-
0037121077
-
A facile method for creating an array of metal-filled carbon nanotubes
-
Bao J, Tie C, Xu Z, Suo Z, Zhou Q, and Hong J (2002) A facile method for creating an array of metal-filled carbon nanotubes. Adv. Mater. 14: 1483-1486.
-
(2002)
Adv. Mater.
, vol.14
, pp. 1483-1486
-
-
Bao, J.1
Tie, C.2
Xu, Z.3
Suo, Z.4
Zhou, Q.5
Hong, J.6
-
19
-
-
0037464208
-
Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation
-
Zhang G Y and Wang E G (2003) Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl. Phys. Lett. 82: 1926-1928.
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 1926-1928
-
-
Zhang, G.Y.1
Wang, E.G.2
-
20
-
-
0037219547
-
The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition
-
Chan L H, Hong K H, Lai S H, Liu X W, and Shih H C (2003) The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition. Thin Solid Films 423: 27-32.
-
(2003)
Thin Solid Films
, vol.423
, pp. 27-32
-
-
Chan, L.H.1
Hong, K.H.2
Lai, S.H.3
Liu, X.W.4
Shih, H.C.5
-
21
-
-
0030082686
-
Radial single-wall carbon tubes growing on surfaces of Pd particles
-
Saito Y and Nishikubo K (1996) Radial single-wall carbon tubes growing on surfaces of Pd particles. J. Phys. Chem. Solids 57: 243-246.
-
(1996)
J. Phys. Chem. Solids
, vol.57
, pp. 243-246
-
-
Saito, Y.1
Nishikubo, K.2
-
22
-
-
0000007049
-
Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge
-
Saito Y, Nishikubo K, Kawabata K, and Matsumoto T (1996) Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J. Appl. Phys. 80: 3062-3067.
-
(1996)
J. Appl. Phys.
, vol.80
, pp. 3062-3067
-
-
Saito, Y.1
Nishikubo, K.2
Kawabata, K.3
Matsumoto, T.4
-
23
-
-
43949169036
-
Growth and structure of graphitic tubules and polyhedral particles in arc-discharge
-
Saito Y, Yoshikawa T, Inagaki M, Tomita M, and Hayashi T (1993) Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chem. Phys. Lett. 204: 277-282.
-
(1993)
Chem. Phys. Lett.
, vol.204
, pp. 277-282
-
-
Saito, Y.1
Yoshikawa, T.2
Inagaki, M.3
Tomita, M.4
Hayashi, T.5
-
24
-
-
0037049574
-
Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes
-
Bao J, Zhou Q, Hong J, and Xu Z (2002) Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes. Appl. Phys. Lett. 81: 4592-4594.
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 4592-4594
-
-
Bao, J.1
Zhou, Q.2
Hong, J.3
Xu, Z.4
|