-
1
-
-
0030335402
-
Asymptotic equivalence of nonparametric regression and white noise
-
BROWN, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2384-2398
-
-
Brown, L.D.1
Low, M.G.2
-
2
-
-
0005943602
-
Direct asymptotic equivalence of nonparametric regression and the infinite dimensional location problem
-
BROWN, L. D. and ZHAO, L. H. (2002). Direct asymptotic equivalence of nonparametric regression and the infinite dimensional location problem. Technical report. Available at http://ljsavage.wharton.upenn.edu/~lzhao/papers/.
-
(2002)
Technical Report
-
-
Brown, L.D.1
Zhao, L.H.2
-
3
-
-
0002939160
-
Comparison of the Reinsch and Speckman splines
-
CARTER, C. K., EAGLESON, G. K. and SILVERMAN, B. W. (1992). Comparison of the Reinsch and Speckman splines. Biometrika 79 81-91.
-
(1992)
Biometrika
, vol.79
, pp. 81-91
-
-
Carter, C.K.1
Eagleson, G.K.2
Silverman, B.W.3
-
4
-
-
0036045292
-
Oracle inequalities for inverse problems
-
CAVALIER, L., GOLUBEV, G. K., PICARD, D. and TSYBAKOV, A. B. (2002). Oracle inequalities for inverse problems. Ann. Statist. 30 843-874.
-
(2002)
Ann. Statist.
, vol.30
, pp. 843-874
-
-
Cavalier, L.1
Golubev, G.K.2
Picard, D.3
Tsybakov, A.B.4
-
5
-
-
0034419669
-
Regularization networks and support vector machines
-
EVGENIOU, T., PONTIL, M. and POGGIO, T. (2000). Regularization networks and support vector machines. Adv. Comput. Math. 13 1-50.
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
6
-
-
0006801778
-
Priors, stabilizers and basis functions: From regularization to radial, tensor and additive splines
-
C.B.C.I. Paper 75
-
GIOSI, F., JONES, M. and POGGIO, T. (1993). Priors, stabilizers and basis functions: From regularization to radial, tensor and additive splines. M.I.T. Artificial Intelligence Laboratory Memo 1430, C.B.C.I. Paper 75.
-
(1993)
M.I.T. Artificial Intelligence Laboratory Memo
, vol.1430
-
-
Giosi, F.1
Jones, M.2
Poggio, T.3
-
7
-
-
0043114357
-
Asymptotic equivalence of spectral density and regression estimation
-
Weierstrass Institute for Applied Analysis and Stochastics, Berlin
-
GOLUBEV, G. and NUSSBAUM, M. (1998). Asymptotic equivalence of spectral density and regression estimation. Technical report, Weierstrass Institute for Applied Analysis and Stochastics, Berlin.
-
(1998)
Technical Report
-
-
Golubev, G.1
Nussbaum, M.2
-
8
-
-
24344448459
-
Asymptotic equivalence for nonparametric generalized linear models
-
Weierstrass Institute for Applied Analysis and Stochastics, Berlin
-
GRAMA, I. and NUSSBAUM, M. (1997). Asymptotic equivalence for nonparametric generalized linear models. Technical report, Weierstrass Institute for Applied Analysis and Stochastics, Berlin.
-
(1997)
Technical Report
-
-
Grama, I.1
Nussbaum, M.2
-
11
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
KIMELDORF, G. S. and WAHBA, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33 82-95.
-
(1971)
J. Math. Anal. Appl.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
12
-
-
21844488410
-
Ordered linear smoothers
-
KNEIP, A. (1994). Ordered linear smoothers. Ann. Statist. 22 835-866.
-
(1994)
Ann. Statist.
, vol.22
, pp. 835-866
-
-
Kneip, A.1
-
13
-
-
0001182369
-
Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing
-
LI, K.-C. (1986). Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing. Ann. Statist. 14 1101-1112.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1101-1112
-
-
Li, K.-C.1
-
14
-
-
0001462696
-
L, cross-validation and generalized cross-validation: Discrete index set
-
L, cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15 958-975.
-
(1987)
Ann. Statist.
, vol.15
, pp. 958-975
-
-
Li, K.-C.1
-
16
-
-
0030328670
-
Asymptotic equivalence of density estimation and Gaussian white noise
-
NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2399-2430
-
-
Nussbaum, M.1
-
17
-
-
0000056062
-
Optimal filtering of square integrable signals in Gaussian white noise
-
PINSKER, M. (1980). Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120-133.
-
(1980)
Problems Inform. Transmission
, vol.16
, pp. 120-133
-
-
Pinsker, M.1
-
18
-
-
84865131152
-
A generalized representer theorem
-
Springer, London
-
SCHÖLKOPF, B., HERBRICH, R. and SMOLA, A. J. (2001). A generalized representer theorem. In Proc. Fourteenth Annual Conference on Computational Learning Theory. Lecture Notes in Comput. Sci. 2111 416-426. Springer, London.
-
(2001)
Proc. Fourteenth Annual Conference on Computational Learning Theory. Lecture Notes in Comput. Sci.
, vol.2111
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
19
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
SMOLA, A. J., SCHÖLKOPF, B. and MÜLLER, K. (1998). The connection between regularization operators and support vector kernels. Neural Networks 11 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.3
-
21
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and randomized GACV
-
(B. Schölkopf, C. J. Burges and A. J. Smola, eds.) MIT Press, Cambridge, MA
-
WAHBA, G. (1999). Support vector machines, reproducing kernel Hilbert spaces and randomized GACV. In Advances in Kernel Methods: Support Vector Learning (B. Schölkopf, C. J. Burges and A. J. Smola, eds.) 69-88. MIT Press, Cambridge, MA.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
22
-
-
0035441827
-
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
-
WILLIAMSON, R. C., SMOLA, A. J. and SCHÖLKOPF, B. (2001). Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Trans. Inform. Theory 47 2516-2532.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, pp. 2516-2532
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
|