메뉴 건너뛰기




Volumn 5747, Issue II, 2005, Pages 858-865

Issues in assessing multi-institutional performance of BI-RADS-based CAD systems

Author keywords

Breast Neoplasms; Calibration; Diagnosis, Computer Assisted; Mammography; Medical Informatics; Pattern Recognition; ROC Curve; Sensitivity and Specificity

Indexed keywords

BREAST NEOPLASMS; COMPUTER-ASSISTED; MEDICAL INFORMATICS; ROC CURVE; SENSITIVITY AND SPECIFICITY;

EID: 23844496491     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.594706     Document Type: Conference Paper
Times cited : (5)

References (30)
  • 1
    • 1442347508 scopus 로고    scopus 로고
    • American Cancer Society: Atlanta
    • Cancer Facts and Figures 2004. 2004, American Cancer Society: Atlanta.
    • (2004) Cancer Facts and Figures 2004
  • 2
    • 0036062795 scopus 로고    scopus 로고
    • Screening mammography: Proven benefit, continued controversy
    • Lee, C.H., Screening mammography: proven benefit, continued controversy. Radiologie clinics of North America, 2002. 40: p. 395-407.
    • (2002) Radiologie Clinics of North America , vol.40 , pp. 395-407
    • Lee, C.H.1
  • 4
    • 0001397622 scopus 로고    scopus 로고
    • Computer-aided diagnosis of breast lesions in medical images
    • Giger, M.L., Computer-aided diagnosis of breast lesions in medical images. Computing in Science & Engineering, 2000. 2(5): p. 39-45.
    • (2000) Computing in Science & Engineering , vol.2 , Issue.5 , pp. 39-45
    • Giger, M.L.1
  • 5
    • 0033180540 scopus 로고    scopus 로고
    • Computer-aided diagnosis in radiology: Potential and pitfalls
    • Doi, K., et al., Computer-aided diagnosis in radiology: potential and pitfalls. European Journal of Radiology., 1999. 31(2): p. 97-109.
    • (1999) European Journal of Radiology , vol.31 , Issue.2 , pp. 97-109
    • Doi, K.1
  • 7
    • 0030982828 scopus 로고    scopus 로고
    • Construction of a Bayesian network for mammographic diagnosis of breast cancer
    • Kahn, C.E., Jr., et al., Construction of a Bayesian network for mammographic diagnosis of breast cancer. Computers in Biology & Medicine, 1997. 27(1): p. 19-29.
    • (1997) Computers in Biology & Medicine , vol.27 , Issue.1 , pp. 19-29
    • Kahn Jr., C.E.1
  • 8
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu, Y., et al., Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology, 1993. 187(1): p. 81-7.
    • (1993) Radiology , vol.187 , Issue.1 , pp. 81-87
    • Wu, Y.1
  • 9
    • 0029095797 scopus 로고
    • Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon
    • Baker, J.A., et al., Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology, 1995. 196(3): p. 817-22.
    • (1995) Radiology , vol.196 , Issue.3 , pp. 817-822
    • Baker, J.A.1
  • 10
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: Improving the quality of breast biopsy recommendations
    • Baker, JA., et al., Artificial neural network: improving the quality of breast biopsy recommendations. Radiology, 1996. 198(1): p. 131-5.
    • (1996) Radiology , vol.198 , Issue.1 , pp. 131-135
    • Baker, J.A.1
  • 11
    • 0033754933 scopus 로고    scopus 로고
    • Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions
    • Floyd, C.E., Jr., J.Y. Lo, and G.D. Tourassi, Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions. American Journal of Roentgenology, 2000. 175(5): p. 1347-52.
    • (2000) American Journal of Roentgenology , vol.175 , Issue.5 , pp. 1347-1352
    • Floyd Jr., C.E.1    Lo, J.Y.2    Tourassi, G.D.3
  • 12
    • 0029380584 scopus 로고
    • Computer-aided diagnosis of breast cancer: Artificial neural network approach for optimized merging of mammographic features
    • Lo, J.Y., et al., Computer-aided diagnosis of breast cancer: artificial neural network approach for optimized merging of mammographic features. Academic Radiology, 1995. 2(10): p. 841-50.
    • (1995) Academic Radiology , vol.2 , Issue.10 , pp. 841-850
    • Lo, J.Y.1
  • 13
    • 0030944929 scopus 로고    scopus 로고
    • Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features
    • Lo, J.Y., et al., Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features. Radiology, 1997. 203(1): p. 159-63.
    • (1997) Radiology , vol.203 , Issue.1 , pp. 159-163
    • Lo, J.Y.1
  • 14
    • 0032920606 scopus 로고    scopus 로고
    • Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks
    • Lo, J.Y., et al., Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks. Academic Radiology., 1999. 6(1): p. 10-5.
    • (1999) Academic Radiology , vol.6 , Issue.1 , pp. 10-15
    • Lo, J.Y.1
  • 15
    • 0036157470 scopus 로고    scopus 로고
    • Cross-institutional evaluation of BI-RADS predictive model for mammographic diagnosis of breast cancer
    • Lo, J.Y., et al., Cross-institutional evaluation of BI-RADS predictive model for mammographic diagnosis of breast cancer. American Journal of Roentgenology, 2002. 178(2): p. 457-63.
    • (2002) American Journal of Roentgenology , vol.178 , Issue.2 , pp. 457-463
    • Lo, J.Y.1
  • 16
    • 33645202128 scopus 로고    scopus 로고
    • Cluster analysis of BI-RADS descriptions of biopsy-proven breast lesions
    • San Diego: SPIE
    • Markey, M.K., et al. Cluster analysis of BI-RADS descriptions of biopsy-proven breast lesions, in Medical Imaging 2002: Image Processing. 2002. San Diego: SPIE.
    • (2002) Medical Imaging 2002: Image Processing
    • Markey, M.K.1
  • 17
    • 0036192204 scopus 로고    scopus 로고
    • Perceptron error surface analysis: A case study in breast cancer diagnosis
    • Markey, M.K., et al., Perceptron error surface analysis: a case study in breast cancer diagnosis. Computers in Biology & Medicine, 2002. 32(2): p. 99-109.
    • (2002) Computers in Biology & Medicine , vol.32 , Issue.2 , pp. 99-109
    • Markey, M.K.1
  • 18
    • 0036240858 scopus 로고    scopus 로고
    • Differences between computer-aided diagnosis of breast masses and that of calcifications
    • Markey, M.K., J.Y. Lo, and C.E. Floyd, Jr., Differences between computer-aided diagnosis of breast masses and that of calcifications. Radiology, 2002. 223(2): p. 489-93.
    • (2002) Radiology , vol.223 , Issue.2 , pp. 489-493
    • Markey, M.K.1    Lo, J.Y.2    Floyd Jr., C.E.3
  • 19
    • 0035006815 scopus 로고    scopus 로고
    • A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
    • Tourassi, G.D., et al., A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Medical Physics, 2001. 28(5): p. 804-11.
    • (2001) Medical Physics , vol.28 , Issue.5 , pp. 804-811
    • Tourassi, G.D.1
  • 20
    • 0037291502 scopus 로고    scopus 로고
    • Self-organizing map for cluster analysis of a breast cancer database
    • Markey, M.K., et al., Self-organizing map for cluster analysis of a breast cancer database. Artificial Intelligence in Medicine., 2003. 27(2): p. 113-27.
    • (2003) Artificial Intelligence in Medicine , vol.27 , Issue.2 , pp. 113-127
    • Markey, M.K.1
  • 21
    • 33645192241 scopus 로고    scopus 로고
    • Computer-aided classification of breast microcalcification clusters: Merging of features from image processing and radiologists
    • San Diego: SPIE
    • Lo, J.Y., et al. Computer-aided classification of breast microcalcification clusters: merging of features from image processing and radiologists, in Medical Imaging 2003: Image Processing. 2003. San Diego: SPIE.
    • (2003) Medical Imaging 2003: Image Processing
    • Lo, J.Y.1
  • 22
    • 20344388989 scopus 로고    scopus 로고
    • Validation of a constraint satisfaction neural network for breast cancer diagnosis: New results from 1030 cases
    • San Diego: SPIE
    • Tourassi, G.D., M.K. Markey, and J.Y. Lo. Validation of a constraint satisfaction neural network for breast cancer diagnosis: new results from 1030 cases, in Medical Imaging 2003: Image Processing. 2003. San Diego: SPIE.
    • (2003) Medical Imaging 2003: Image Processing
    • Tourassi, G.D.1    Markey, M.K.2    Lo, J.Y.3
  • 23
    • 11144265313 scopus 로고    scopus 로고
    • Bayesian networks of BI-RADS descriptors for breast lesion classification
    • Fischer, EA., J.Y. Lo, and M.K. Markey. Bayesian networks of BI-RADS descriptors for breast lesion classification, in IEEE EMBS. 2004.
    • (2004) IEEE EMBS
    • Fischer, E.A.1    Lo, J.Y.2    Markey, M.K.3
  • 25
    • 0002639290 scopus 로고    scopus 로고
    • Current status of the digital database for screening mammography
    • N. Karssemeijer, M. Thijssen, and J.H. Hendriks, Editors. Kluwer Academic Publishers: Dordrecht
    • Heath, M., K.W. Bowyer, and D. Kopans, Current status of the Digital Database for Screening Mammography, in Digital Mammography, N. Karssemeijer, M. Thijssen, and J.H. Hendriks, Editors. 1998, Kluwer Academic Publishers: Dordrecht, p. 457-460.
    • (1998) Digital Mammography , pp. 457-460
    • Heath, M.1    Bowyer, K.W.2    Kopans, D.3
  • 26
    • 0002734346 scopus 로고    scopus 로고
    • The digital database for screening mammography
    • Toronto, Canada: Medical Physics Publishing
    • Heath, M., et al. The Digital Database for Screening Mammography. in 5th International Workshop on Digital Mammography. 2000. Toronto, Canada: Medical Physics Publishing.
    • (2000) 5th International Workshop on Digital Mammography
    • Heath, M.1
  • 27
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz, C.E., Basic principles of ROC analysis. Seminars in Nuclear Medicine, 1978. 8(4): p. 283-98.
    • (1978) Seminars in Nuclear Medicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 28
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • Metz, C.E., ROC methodology in radiologic imaging. Investigative Radiology., 1986. 21(9): p. 720-33.
    • (1986) Investigative Radiology , vol.21 , Issue.9 , pp. 720-733
    • Metz, C.E.1
  • 29
    • 0029824432 scopus 로고    scopus 로고
    • A receiver operating characteristic partial area index for highly sensitive diagnostic tests
    • Jiang, Y., C.E. Metz, and R.M. Nishikawa, A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology, 1996(201): p. 745-750.
    • (1996) Radiology , Issue.201 , pp. 745-750
    • Jiang, Y.1    Metz, C.E.2    Nishikawa, R.M.3
  • 30
    • 33645198891 scopus 로고    scopus 로고
    • Prevalence-modified estimation of computer-determined probabilities of malignancy for CAD
    • Chicago, IL
    • Horsch, K., et al. Prevalence-modified estimation of computer-determined probabilities of malignancy for CAD. in Radiological Society of North America Annual Meeting. 2003. Chicago, IL.
    • (2003) Radiological Society of North America Annual Meeting
    • Horsch, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.