메뉴 건너뛰기




Volumn 88, Issue 2, 2005, Pages 903-915

Elucidating protein thermodynamics from the three-dimensional structure of the native state using network rigidity

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; CALCULATION; COVALENT BOND; CURVE FITTING; DECOMPOSITION; ENERGY; ENTHALPY; ENTROPY; FORCE; HEATING; HYDROGEN BOND; MECHANICS; MODEL; MOLECULAR INTERACTION; PH; PROTEIN CONFORMATION; PROTEIN FOLDING; PROTEIN STRUCTURE; RIGIDITY; THERMODYNAMICS; THREE DIMENSIONAL IMAGING; CHEMICAL MODEL; CHEMICAL STRUCTURE; CHEMISTRY; COMPARATIVE STUDY; COMPUTER SIMULATION; CRYSTALLOGRAPHY; EVALUATION; METHODOLOGY; MOTION; STRUCTURE ACTIVITY RELATION; ULTRASTRUCTURE;

EID: 21244483843     PISSN: 00063495     EISSN: None     Source Type: Journal    
DOI: 10.1529/biophysj.104.048496     Document Type: Article
Times cited : (46)

References (41)
  • 1
    • 0034604105 scopus 로고    scopus 로고
    • A surprising simplicity to protein folding
    • Baker, D. 2000. A surprising simplicity to protein folding. Nature. 405:39-42.
    • (2000) Nature , vol.405 , pp. 39-42
    • Baker, D.1
  • 2
    • 0028858516 scopus 로고
    • Decomposition of interaction free energies in proteins and other complex systems
    • Brady, G. P., and K. A. Sharp. 1995. Decomposition of interaction free energies in proteins and other complex systems. J. Mol. Biol. 254:77-85.
    • (1995) J. Mol. Biol. , vol.254 , pp. 77-85
    • Brady, G.P.1    Sharp, K.A.2
  • 3
    • 0034738021 scopus 로고    scopus 로고
    • Heat capacity of hydrogen-bonded networks: An alternative view of protein folding thermodynamics
    • Cooper, A. 2000. Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics. Biophys. Chem. 85:25-39.
    • (2000) Biophys. Chem. , vol.85 , pp. 25-39
    • Cooper, A.1
  • 4
    • 0343742614 scopus 로고    scopus 로고
    • Automated design of the surface positions of protein helices
    • Dahiyat, B. I., D. B. Gordon, and S. L. Mayo. 1997. Automated design of the surface positions of protein helices. Protein Sci. 6:1333-1337.
    • (1997) Protein Sci. , vol.6 , pp. 1333-1337
    • Dahiyat, B.I.1    Gordon, D.B.2    Mayo, S.L.3
  • 5
    • 0025370815 scopus 로고
    • Dominant forces in protein folding
    • Dill, K. A. 1990. Dominant forces in protein folding. Biochemistry. 29:7133-7155.
    • (1990) Biochemistry , vol.29 , pp. 7133-7155
    • Dill, K.A.1
  • 6
    • 0031022887 scopus 로고    scopus 로고
    • Additivity principles in biochemistry
    • Dill, K. A. 1997. Additivity principles in biochemistry. J. Biol. Chem. 272:701-704.
    • (1997) J. Biol. Chem. , vol.272 , pp. 701-704
    • Dill, K.A.1
  • 8
    • 0141959709 scopus 로고    scopus 로고
    • Importance of native-state topology for determining the folding rate of two-state proteins
    • Gromiha, M. M. 2003. Importance of native-state topology for determining the folding rate of two-state proteins. J. Chem. Inf. Comput. Sci. 43:1481-1485.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1481-1485
    • Gromiha, M.M.1
  • 10
    • 0037438353 scopus 로고    scopus 로고
    • Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution
    • Hedwig, G. R., and H. J. Hinz. 2003. Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100:239-260.
    • (2003) Biophys. Chem. , vol.100 , pp. 239-260
    • Hedwig, G.R.1    Hinz, H.J.2
  • 11
    • 0036888379 scopus 로고    scopus 로고
    • Identifying protein folding cores from the evolution of flexible regions during unfolding
    • Hespenheide, B. M., A. J. Rader, M. F. Thorpe, and L. A. Kuhn. 2002. Identifying protein folding cores from the evolution of flexible regions during unfolding. J. Mol. Graph. Model. 21:195-207.
    • (2002) J. Mol. Graph. Model. , vol.21 , pp. 195-207
    • Hespenheide, B.M.1    Rader, A.J.2    Thorpe, M.F.3    Kuhn, L.A.4
  • 12
    • 0032544060 scopus 로고    scopus 로고
    • The structural distribution of cooperative interactions in proteins: Analysis of the native state ensemble
    • Hilser, V. J., D. Dowdy, T. G. Oas, and E. Freire. 1998. The structural distribution of cooperative interactions in proteins: Analysis of the native state ensemble. Proc. Natl. Acad. Sci. USA. 95:9903-9908.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 9903-9908
    • Hilser, V.J.1    Dowdy, D.2    Oas, T.G.3    Freire, E.4
  • 13
    • 0030580089 scopus 로고    scopus 로고
    • Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors
    • Hilser, V. J., and E. Freire. 1996. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 262:756-772.
    • (1996) J. Mol. Biol. , vol.262 , pp. 756-772
    • Hilser, V.J.1    Freire, E.2
  • 15
    • 0000785338 scopus 로고
    • Generic rigidity percolation: The pebble game
    • Jacobs, D. J., and M. F. Thorpe. 1995. Generic rigidity percolation: the pebble game. Phys. Rev. Lett. 75:4051-4054.
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 4051-4054
    • Jacobs, D.J.1    Thorpe, M.F.2
  • 16
    • 1542285840 scopus 로고    scopus 로고
    • Network rigidity at finite temperature: Relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems
    • Jacobs, D. J., S. Dallakyan, G. C. Wood, and A. Heckathorne. 2003. Network rigidity at finite temperature: Relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems. Phys. Rev. E. 68:061109-061122.
    • (2003) Phys. Rev. E , vol.68 , pp. 61109-61122
    • Jacobs, D.J.1    Dallakyan, S.2    Wood, G.C.3    Heckathorne, A.4
  • 17
    • 0035427398 scopus 로고    scopus 로고
    • Graph theory predictions of protein flexibility
    • Jacobs, D. J., A. Rader, L. A. Kuhn, and M. F. Thorpe. 2001. Graph theory predictions of protein flexibility. Proteins. 44:150-155.
    • (2001) Proteins , vol.44 , pp. 150-155
    • Jacobs, D.J.1    Rader, A.2    Kuhn, L.A.3    Thorpe, M.F.4
  • 18
    • 4444325610 scopus 로고    scopus 로고
    • Understanding the alpha-helix to coil transition in polypeptides using network rigidity: Predicting heat and cold denaturation in mixed solvent conditions
    • Jacobs, D. J., and G. G. Wood. 2004. Understanding the alpha-helix to coil transition in polypeptides using network rigidity: predicting heat and cold denaturation in mixed solvent conditions. Biopolymers. 75:1-31.
    • (2004) Biopolymers , vol.75 , pp. 1-31
    • Jacobs, D.J.1    Wood, G.G.2
  • 19
    • 0028343413 scopus 로고
    • Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy
    • Koehl, P., and M. Delarue. 1994. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J. Mol. Biol. 239:249-275.
    • (1994) J. Mol. Biol. , vol.239 , pp. 249-275
    • Koehl, P.1    Delarue, M.2
  • 20
    • 0033936376 scopus 로고    scopus 로고
    • Thermodynamics and dynamics of histidine-binding protein, the water-soluble receptor of histidine permease. Implications for the transport of high and low affinity ligands
    • Kreimer, D. I., H. Malak, J. R. Lakowicz, S. Trakhanov, E. Villar, and V. L. Shnyrov. 2000. Thermodynamics and dynamics of histidine-binding protein, the water-soluble receptor of histidine permease. Implications for the transport of high and low affinity ligands. Eur. J. Biochem. 267:4242-4252.
    • (2000) Eur. J. Biochem. , vol.267 , pp. 4242-4252
    • Kreimer, D.I.1    Malak, H.2    Lakowicz, J.R.3    Trakhanov, S.4    Villar, E.5    Shnyrov, V.L.6
  • 21
    • 0034855858 scopus 로고    scopus 로고
    • How do thermophilic proteins deal with heat?
    • Kumar, S., and R. Nussinov. 2001. How do thermophilic proteins deal with heat? Cell. Mol. Life Sci. 58:1216-1233.
    • (2001) Cell. Mol. Life Sci. , vol.58 , pp. 1216-1233
    • Kumar, S.1    Nussinov, R.2
  • 22
    • 9144253328 scopus 로고    scopus 로고
    • Investigations on the alpha-helix to coil transition in HP heterogeneous polypeptides using network rigidity
    • Lee, M. S., G. G. Wood, and D. J. Jacobs. 2004. Investigations on the alpha-helix to coil transition in HP heterogeneous polypeptides using network rigidity. J. Phys.: Condens. Matter. 16:S5035-S5046.
    • (2004) J. Phys.: Condens. Matter. , vol.16
    • Lee, M.S.1    Wood, G.G.2    Jacobs, D.J.3
  • 23
    • 0141627542 scopus 로고    scopus 로고
    • 3D-lattice Monte Carlo simulations of model proteins. Size effects on folding thermodynamics and kinetics
    • Leonhard, K., J. M. Prausnitz, and C. J. Radke. 2003. 3D-lattice Monte Carlo simulations of model proteins. Size effects on folding thermodynamics and kinetics. Biophys. Chem. 106:81-89.
    • (2003) Biophys. Chem. , vol.106 , pp. 81-89
    • Leonhard, K.1    Prausnitz, J.M.2    Radke, C.J.3
  • 24
    • 0000333671 scopus 로고
    • On the helix-coil transition in polypeptides
    • Lifson, S., and A. Roig. 1961. On the helix-coil transition in polypeptides. J. Chem. Phys. 34:1963-1974.
    • (1961) J. Chem. Phys. , vol.34 , pp. 1963-1974
    • Lifson, S.1    Roig, A.2
  • 25
    • 6344223617 scopus 로고    scopus 로고
    • A flexible approach for understanding protein stability
    • Livesay, D. R., S. Dallakyan, G. G. Wood, and D. J. Jacobs. 2004. A flexible approach for understanding protein stability. FEBS Lett. 576:468-476.
    • (2004) FEBS Lett. , vol.576 , pp. 468-476
    • Livesay, D.R.1    Dallakyan, S.2    Wood, G.G.3    Jacobs, D.J.4
  • 26
    • 0344837306 scopus 로고    scopus 로고
    • Conservation of electrostatic properties within enzyme families and superfamilies
    • Livesay, D. R., P. Jambeck, A. Rojnuckarin, and S. Subramaniam. 2003. Conservation of electrostatic properties within enzyme families and superfamilies. Biochemistry. 42:3464-3473.
    • (2003) Biochemistry , vol.42 , pp. 3464-3473
    • Livesay, D.R.1    Jambeck, P.2    Rojnuckarin, A.3    Subramaniam, S.4
  • 28
    • 0027305948 scopus 로고
    • Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration
    • Makhatadze, G. I., and P. L. Privalov. 1993. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J. Mol. Biol. 232:639-659.
    • (1993) J. Mol. Biol. , vol.232 , pp. 639-659
    • Makhatadze, G.I.1    Privalov, P.L.2
  • 29
    • 0028334097 scopus 로고
    • Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies
    • Mark, A. E., and W. F. van Gunsteren. 1994. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J. Mol. Biol. 240:167-176.
    • (1994) J. Mol. Biol. , vol.240 , pp. 167-176
    • Mark, A.E.1    Van Gunsteren, W.F.2
  • 30
    • 0002688569 scopus 로고    scopus 로고
    • Protein folding problem as studied by new simulation algorithms
    • Okamoto, Y. 1998. Protein folding problem as studied by new simulation algorithms. Rec. Res. Oev. Pure & Appl. Chem. 2:1-23.
    • (1998) Rec. Res. Oev. Pure & Appl. Chem. , vol.2 , pp. 1-23
    • Okamoto, Y.1
  • 31
    • 0034710950 scopus 로고    scopus 로고
    • Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble
    • Pan, H., J. C. Lee, and V. J. Hilser. 2000. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA. 97:12020-12025.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 12020-12025
    • Pan, H.1    Lee, J.C.2    Hilser, V.J.3
  • 32
    • 0037934616 scopus 로고    scopus 로고
    • Understanding folding and design: Replica-exchange simulations of "Tip-cage" miniproteins
    • Pitera, J. D., and W. Swope. 2003. Understanding folding and design: replica-exchange simulations of "Tip-cage" miniproteins. Proc. Natl. Acad. Sci. USA. 100:7587-7592.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 7587-7592
    • Pitera, J.D.1    Swope, W.2
  • 33
    • 0346492917 scopus 로고    scopus 로고
    • Folding core predictions from network models of proteins
    • Rader, A. J., and I. Bahar. 2004. Folding core predictions from network models of proteins. Polymer. 45:659-668.
    • (2004) Polymer , vol.45 , pp. 659-668
    • Rader, A.J.1    Bahar, I.2
  • 36
    • 0000159569 scopus 로고    scopus 로고
    • Protein structure and the energetics of protein stability
    • Robertson, A. D., and K. P. Murphy. 1997. Protein structure and the energetics of protein stability. Chem. Rev. 97:1251-1267.
    • (1997) Chem. Rev. , vol.97 , pp. 1251-1267
    • Robertson, A.D.1    Murphy, K.P.2
  • 38
    • 0242385395 scopus 로고    scopus 로고
    • Conferring thermostability to mesophilic proteins through optimized electrostatic surfaces
    • Torrez, M., M. Schultehenrich, and D. R. Livesay. 2003. Conferring thermostability to mesophilic proteins through optimized electrostatic surfaces. Biophys. J. 85:2845-2853.
    • (2003) Biophys. J. , vol.85 , pp. 2845-2853
    • Torrez, M.1    Schultehenrich, M.2    Livesay, D.R.3
  • 39
    • 0023644679 scopus 로고
    • Structure of ubiquitin refined at 1.8 A resolution
    • Vijay-Kumar, S., C. E. Bugg, and W. J. Cook. 1987. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194:531-544.
    • (1987) J. Mol. Biol. , vol.194 , pp. 531-544
    • Vijay-Kumar, S.1    Bugg, C.E.2    Cook, W.J.3
  • 41
    • 0028174670 scopus 로고
    • Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins
    • Yao, N., S. Trakhanov, and F. A. Quiocho. 1994. Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins. Biochemistry. 33:4769-4779.
    • (1994) Biochemistry , vol.33 , pp. 4769-4779
    • Yao, N.1    Trakhanov, S.2    Quiocho, F.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.