메뉴 건너뛰기




Volumn 13, Issue 3-4, 2005, Pages 379-388

A new particle predictor for fault prediction of nonlinear time-varying systems

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; MAINTENANCE; MATHEMATICAL MODELS; MONTE CARLO METHODS; NEURAL NETWORKS; PREDICTIVE CONTROL SYSTEMS; PROBABILITY;

EID: 21244476714     PISSN: 09691855     EISSN: None     Source Type: Journal    
DOI: 10.1002/apj.5500130320     Document Type: Article
Times cited : (35)

References (16)
  • 1
    • 0025421966 scopus 로고    scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results
    • Frank, P.M. 1998. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - a survey and some new results, Automatica, 26 (3), 459-474.
    • (1998) Automatica , vol.26 , Issue.3 , pp. 459-474
    • Frank, P.M.1
  • 2
    • 0024122587 scopus 로고
    • Survey of model based failure detection and isolation in complex plants
    • Gertler, J.J. 1988. Survey of model based failure detection and isolation in complex plants, IEEE Control Systems, 8 (6), 3-11.
    • (1988) IEEE Control Systems , vol.8 , Issue.6 , pp. 3-11
    • Gertler, J.J.1
  • 3
    • 0027625709 scopus 로고
    • Fault diagnosis of machine via parameter estimation and knowledge processing-tutorial paper
    • Isermann, R. 1993. Fault diagnosis of machine via parameter estimation and knowledge processing-tutorial paper, Automatica, 29 (4), 815-835.
    • (1993) Automatica , vol.29 , Issue.4 , pp. 815-835
    • Isermann, R.1
  • 4
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • Tse, P.W., and Atherton, D.P. 1999. Prediction of machine deterioration using vibration based fault trends and recurrent neural networks, J. Vibration Acoustics, 121 (3), 355-362.
    • (1999) J. Vibration Acoustics , vol.121 , Issue.3 , pp. 355-362
    • Tse, P.W.1    Atherton, D.P.2
  • 5
    • 0345920426 scopus 로고    scopus 로고
    • The use of ARIMA models for reliability forecasting and analysis
    • Ho, S.L., and Xie, M. 1998. The use of ARIMA models for reliability forecasting and analysis, Computers & Industrial Engineering, 35 (1-2), 213-216.
    • (1998) Computers & Industrial Engineering , vol.35 , Issue.1-2 , pp. 213-216
    • Ho, S.L.1    Xie, M.2
  • 7
    • 0032642536 scopus 로고    scopus 로고
    • State estimation for predictive maintenance using Kalman filter
    • Yang, S.K., and Liu, T.S. 1999. State estimation for predictive maintenance using Kalman filter, Reliability Engineering and System Safety, 66 (1), 29-39.
    • (1999) Reliability Engineering and System Safety , vol.66 , Issue.1 , pp. 29-39
    • Yang, S.K.1    Liu, T.S.2
  • 8
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering
    • Handschin, J.E., and Mayne, D.Q. 1969. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control, 9, 547-559.
    • (1969) Int. J. Control , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 9
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering methods for practitioners, IEEE Trans
    • Crisan, D., and Doucet A. 2002. A survey of convergence results on particle filtering methods for practitioners, IEEE Trans. Signal Processing, 50 (3), 736-746.
    • (2002) Signal Processing , vol.50 , Issue.3 , pp. 736-746
    • Crisan, D.1    Doucet, A.2
  • 10
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N.J., Salmond, D.J., and Smith A.F.M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F, 140(2), 107-113.
    • (1993) IEE Proceedings-F , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 11
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet, A., Godsill, S.J., and Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistical Computing, 10, 197-208.
    • (2000) Statistical Computing , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 12
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking
    • Arulampalam, S., Maskell, S., Gordon, N., and Clapp T. 2001. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking, IEEE Trans. Signal Processing, 50 (2), 174-188.
    • (2001) IEEE Trans. Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 14
    • 0036475565 scopus 로고    scopus 로고
    • Particle filters for positioning, navigation and tracking
    • Gustafsson, F., et al. 2002. Particle filters for positioning, navigation and tracking, IEEE Trans. Signal Processing, 50 (2), 425-437.
    • (2002) IEEE Trans. Signal Processing , vol.50 , Issue.2 , pp. 425-437
    • Gustafsson, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.