-
1
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. Aggarwal and P. Yu. Outlier Detection for High Dimensional Data. SIGMOD, 2001.
-
(2001)
SIGMOD
-
-
Aggarwal, C.1
Yu, P.2
-
2
-
-
0020849266
-
Maintaining knowledge about temporal intervals
-
J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM 26, 11, 832-843, 1983.
-
(1983)
Communications of the ACM
, vol.26
, Issue.11
, pp. 832-843
-
-
Allen, J.1
-
3
-
-
20444495731
-
Operating system enhancement to prevent the misuse of system calls
-
M. Bernaschi, E. Gabrielli and L.V. Mancini. Operating System Enhancement to Prevent the Misuse of System Calls. ACM CCS, 2001.
-
(2001)
ACM CCS
-
-
Bernaschi, M.1
Gabrielli, E.2
Mancini, L.V.3
-
4
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. Breunig, H. Kriegel, R. Ng and J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD, pp. 93-104, 2000.
-
(2000)
SIGMOD
, pp. 93-104
-
-
Breunig, M.1
Kriegel, H.2
Ng, R.3
Sander, J.4
-
5
-
-
20444501420
-
Learning rules and clusters for anomaly detection in network traffic
-
V. Kumar, J. Srivastava and A. Lazarevic (editors), Kluwer
-
P. Chan, M. Mahoney and M. Arshad. Learning Rules and Clusters for Anomaly Detection in Network Traffic. Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava and A. Lazarevic (editors), Kluwer, 2003.
-
(2003)
Managing Cyber Threats: Issues, Approaches and Challenges
-
-
Chan, P.1
Mahoney, M.2
Arshad, M.3
-
6
-
-
85149612939
-
Fast effective rule induction
-
W. Cohen. Fast Effective Rule Induction. ICML, 1995.
-
(1995)
ICML
-
-
Cohen, W.1
-
9
-
-
0141797880
-
A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
-
D. Barbara and S. Jajodia (editors), Kluwer
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo. A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. In D. Barbara and S. Jajodia (editors), Applications of Data Mining in Computer Security, Kluwer, 2002.
-
(2002)
Applications of Data Mining in Computer Security
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
11
-
-
85084160308
-
A study in using neural networks for anomaly and misuse detection
-
A. Ghosh and A. Schwartzbard. A Study in Using Neural Networks for Anomaly and Misuse Detection. USENK Security Symposium, 1999.
-
(1999)
USENK Security Symposium
-
-
Ghosh, A.1
Schwartzbard, A.2
-
12
-
-
0014854453
-
The diagram, a method for comparing sequences. Its use with amino acid and nucleotide sequences
-
A.J. Gibbs and G.A. McIntyre. The diagram, a method for comparing sequences. Its use with amino acid and nucleotide sequences. Eur. J. Biochem. 16:1-11, 1970.
-
(1970)
Eur. J. Biochem.
, vol.16
, pp. 1-11
-
-
Gibbs, A.J.1
McIntyre, G.A.2
-
13
-
-
44049102761
-
Considering both intra-pattern and inter-pattern anomalies in intrusion detection
-
N. Jiang, K. Hua and S. Sheu. Considering Both Intra-pattern and Inter-pattern Anomalies in Intrusion Detection. ICDM, 2002.
-
(2002)
ICDM
-
-
Jiang, N.1
Hua, K.2
Sheu, S.3
-
14
-
-
84949191342
-
Temporal signatures for intrusion detection
-
A. Jones and S. Li. Temporal Signatures for Intrusion Detection. ACSAC, 2001.
-
(2001)
ACSAC
-
-
Jones, A.1
Li, S.2
-
16
-
-
0003858566
-
Algorithms for mining distance-based outliers in large data sets
-
E. Knorr and R. Ng. Algorithms for Mining Distance-based Outliers in Large Data Sets. VLDB, 1998.
-
(1998)
VLDB
-
-
Knorr, E.1
Ng, R.2
-
19
-
-
20444444362
-
A comparative study of anomaly detection schemes in network intrusion detection
-
A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava and V. Kumar. A comparative study of anomaly detection schemes in network intrusion detection, SDM, 2003.
-
(2003)
SDM
-
-
Lazarevic, A.1
Ertoz, L.2
Ozgur, A.3
Srivastava, J.4
Kumar, V.5
-
21
-
-
23944513192
-
Use of text categorization techniques for intrusion detection
-
Y. Liao and R. Vemuri. Use of Text Categorization Techniques for Intrusion Detection, 11th USENDC Security Symposium, 2002.
-
(2002)
11th USENDC Security Symposium
-
-
Liao, Y.1
Vemuri, R.2
-
22
-
-
0034301517
-
The 1999 DARPA off-line intrusion detection evaluation
-
R. Lippmann, J. Haines, D. Fried, J. Korba and K. Das. The 1999 DARPA Off-Line Intrusion Detection Evaluation. Computer Networks (34) 579-595, 2000.
-
(2000)
Computer Networks
, Issue.34
, pp. 579-595
-
-
Lippmann, R.1
Haines, J.2
Fried, D.3
Korba, J.4
Das, K.5
-
24
-
-
78149297786
-
Learning rules for anomaly detection of hostile network traffic
-
M. Mahoney and P. Chan. Learning Rules for Anomaly Detection of Hostile Network Traffic, ICDM, 2003.
-
(2003)
ICDM
-
-
Mahoney, M.1
Chan, P.2
-
29
-
-
0031684427
-
Combinatorial pattern discovery in biological sequences
-
I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological sequences. Bioinformatics, 14(1):55-67, 1998.
-
(1998)
Bioinformatics
, vol.14
, Issue.1
, pp. 55-67
-
-
Rigoutsos, I.1
Floratos, A.2
-
30
-
-
10044227402
-
Learning states and rules for time series anomaly detection
-
S. Salvador, P. Chan and J. Brodie. Learning States and Rules for Time Series Anomaly Detection. FLAIRS, 2004.
-
(2004)
FLAIRS
-
-
Salvador, S.1
Chan, P.2
Brodie, J.3
-
31
-
-
1342274727
-
A fast automaton-based method for detecting anomalous program behaviors
-
R. Sekar, M. Bendre, D. Dhurjati and P. Bollineni. A Fast Automaton-based Method for Detecting Anomalous Program Behaviors. IEEE S&P, 2001.
-
(2001)
IEEE S&P
-
-
Sekar, R.1
Bendre, M.2
Dhurjati, D.3
Bollineni, P.4
-
32
-
-
20444501819
-
"Why 6?" defining the operational limits of slide
-
K. Tan & R. Maxion. "Why 6?" Defining the Operational Limits of slide. IEEE S&P, 2002.
-
(2002)
IEEE S&P
-
-
Tan, K.1
Maxion, R.2
-
33
-
-
33745443149
-
Learning rules from system call arguments and sequences for anomaly detection
-
G. Tandon and P. Chan. Learning Rules from System Call Arguments and Sequences for Anomaly Detection. DMSEC, 2003.
-
(2003)
DMSEC
-
-
Tandon, G.1
Chan, P.2
-
34
-
-
0038011184
-
Mimicry attacks on host-based intrusion detection systems
-
D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection Systems. ACM CCS, 2002.
-
(2002)
ACM CCS
-
-
Wagner, D.1
Soto, P.2
-
35
-
-
18844368550
-
Detecting intrusions using system calls: Alternative data models
-
C. Wartender, S. Forrest and B. Pearlmutter. Detecting Intrusions Using System Calls: Alternative Data Models. IEEE S&P, 1999.
-
(1999)
IEEE S&P
-
-
Wartender, C.1
Forrest, S.2
Pearlmutter, B.3
-
36
-
-
20444507366
-
An intrusion-detection system based on the teiresias pattern-discovery algorithm
-
A. Wespi, M. Dacier and H. Debar. An Intrusion-Detection System Based on the Teiresias Pattern-Discovery Algorithm. Proc. EICAR, 1999.
-
(1999)
Proc. EICAR
-
-
Wespi, A.1
Dacier, M.2
Debar, H.3
-
37
-
-
0037636215
-
Intrusion detection using variable-length audit trail patterns
-
A. Wespi, M. Dacier and H. Debar. Intrusion detection using variable-length audit trail patterns. RAID, 2000.
-
(2000)
RAID
-
-
Wespi, A.1
Dacier, M.2
Debar, H.3
|