-
1
-
-
3543075602
-
An adaptive resonance architecture to define normality and detect novelties in time series and databases
-
Portland, OR
-
Caudell, T. and Newman, D. 1993. An Adaptive Resonance Architecture to Define Normality and Detect Novelties in Time Series and Databases. In Proc. IEEE World Congress on Neural Networks, 166-176. Portland, OR.
-
(1993)
Proc. IEEE World Congress on Neural Networks
, pp. 166-176
-
-
Caudell, T.1
Newman, D.2
-
6
-
-
0032686723
-
Chameleon: A hierarchical clustering algorithm using dynamic modeling
-
Karypis, G.; Han, E.; and Kumar, V. 1999. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 32(8):68-75.
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, E.2
Kumar, V.3
-
7
-
-
33845594450
-
An online algorithm for segmenting time series
-
San Jose, CA
-
Keogh, E.; Chu, S.; Hart, D.; and Pazanni, M. 2001. An Online Algorithm for Segmenting Time Series. In Proc. IEEE Intl. Conf. on Data Mining, 289-296. San Jose, CA.
-
(2001)
Proc. IEEE Intl. Conf. on Data Mining
, pp. 289-296
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazanni, M.4
-
8
-
-
0038724494
-
Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
-
Monti, S. et al. 2003. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52(1-2):91-118.
-
(2003)
Machine Learning
, vol.52
, Issue.1-2
, pp. 91-118
-
-
Monti, S.1
-
9
-
-
10044256143
-
Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
-
CS-2003-18, Dept. of Computer Sciences, Florida Institute of Technology
-
Salvador, S. and Chan, P. 2003. Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms, Technical Report, CS-2003-18, Dept. of Computer Sciences, Florida Institute of Technology.
-
(2003)
Technical Report
-
-
Salvador, S.1
Chan, P.2
-
10
-
-
10044239002
-
Learning states and rules for time series anomaly detection
-
CS-2003-05, Dept. of Computer Sciences, Florida Institute of Technology
-
Salvador, S.; Chan, P.; and Brodie, J. 2003 Learning States and Rules for Time Series Anomaly Detection, Technical Report, CS-2003-05, Dept. of Computer Sciences, Florida Institute of Technology.
-
(2003)
Technical Report
-
-
Salvador, S.1
Chan, P.2
Brodie, J.3
-
13
-
-
0012452913
-
Cluster validation by prediction strength
-
2001-21, Dept. of Biostatistics, Stanford Univ
-
Tibshirani, R. et al. 2001. Cluster Validation by Prediction Strength, Technical Report, 2001-21, Dept. of Biostatistics, Stanford Univ.
-
(2001)
Technical Report
-
-
Tibshirani, R.1
-
14
-
-
0003414440
-
Estimating the number of clusters in a dataset via the Gap statistic
-
Dept. of Biostatistics, Stanford Univ
-
Tibshirani, R.; Walther, G.; and Hastie, T. 2000. Estimating the number of clusters in a dataset via the Gap statistic. Technical Report, 208, Dept. of Biostatistics, Stanford Univ.
-
(2000)
Technical Report
, vol.208
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
15
-
-
1642433203
-
Estimating the number of segments in time series data using permutation tests
-
Maebashi City, Japan
-
Vasko, K. and T. Toivonen. 2002. Estimating the number of segments in time series data using permutation tests. In Proc. IEEE Intl. Conf. on Data Mining, 466-473, Maebashi City, Japan.
-
(2002)
Proc. IEEE Intl. Conf. on Data Mining
, pp. 466-473
-
-
Vasko, K.1
Toivonen, T.2
|