-
1
-
-
0348193007
-
Soliton perturbations and the random Kepler problem
-
Abdullaev, F. Kh., J. C. Bronski and G. Papanicolaou. 2000. Soliton perturbations and the random Kepler problem. Phys. D. 135:369-386.
-
(2000)
Phys. D.
, vol.135
, pp. 369-386
-
-
Abdullaev, F.Kh.1
Bronski, J.C.2
Papanicolaou, G.3
-
3
-
-
0000613724
-
Error estimates for adaptive finite element computations
-
Babuška, I. and W. C. Rheinboldt. 1978. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15:736-754.
-
(1978)
SIAM J. Numer. Anal.
, vol.15
, pp. 736-754
-
-
Babuška, I.1
Rheinboldt, W.C.2
-
4
-
-
0001772076
-
Feedback and adaptive finite element solution of one-dimensional boundary value problems
-
Babuška, I. and M. Vogelius. 1984. Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44(1):75-102.
-
(1984)
Numer. Math.
, vol.44
, Issue.1
, pp. 75-102
-
-
Babuška, I.1
Vogelius, M.2
-
5
-
-
0030383153
-
A feed-back approach to error control in finite element methods: Basic analysis and examples
-
Becker, R., and R. Rannacher. 1996. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. (4)237-264.
-
(1996)
East-West J. Numer. Math.
, Issue.4
, pp. 237-264
-
-
Becker, R.1
Rannacher, R.2
-
6
-
-
85022001969
-
An optimal control approach to a posteriori error estimation in finite element methods
-
Becker, R., and R. Rannacher. 2001. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 1-102.
-
(2001)
Acta Numerica
, pp. 1-102
-
-
Becker, R.1
Rannacher, R.2
-
7
-
-
2442452617
-
Adaptive finite element methods with convergence rates
-
Binev, P., W. Dahmen, and R. DeVore. 2004. Adaptive finite element methods with convergence rates. Numer. Math. 97(2):219-268.
-
(2004)
Numer. Math.
, vol.97
, Issue.2
, pp. 219-268
-
-
Binev, P.1
Dahmen, W.2
Devore, R.3
-
9
-
-
20444398382
-
Solving Dirichlet problems numerically using the Feynman-Kac representation
-
ETH
-
Buchmann, F., and W. Petersen. 2002. Solving Dirichlet problems numerically using the Feynman-Kac representation. Research report no. 2002-01, ETH.
-
(2002)
Research Report No. 2002-01
, vol.2002
, Issue.1
-
-
Buchmann, F.1
Petersen, W.2
-
10
-
-
0035606214
-
Adaptive wavelet method for elliptic operator equations: Convergence rates
-
Cohen, A., W. Dahmen, and R. DeVore. 2000. Adaptive wavelet method for elliptic operator equations: convergence rates. Math. Comp 70(233):27-75.
-
(2000)
Math. Comp
, vol.70
, Issue.233
, pp. 27-75
-
-
Cohen, A.1
Dahmen, W.2
DeVore, R.3
-
11
-
-
85011480386
-
Wavellet and multiscale methods for operator equations
-
Dahmen, W. 1997. Wavellet and multiscale methods for operator equations. Acta Numerica 6:55-228.
-
(1997)
Acta Numerica
, vol.6
, pp. 55-228
-
-
Dahmen, W.1
-
12
-
-
85009724776
-
Nonlinear approximation
-
DeVore, R. A. 1998. Nonlinear approximation. Acta Numerica 51-150.
-
(1998)
Acta Numerica
, pp. 51-150
-
-
DeVore, R.A.1
-
15
-
-
0009522795
-
Introduction to adaptive methods for differential equations
-
Eriksson, K., D. Estep, P. Hansbo, and C. Johnson. 1995. Introduction to adaptive methods for differential equations. Acta Numerica 105-158.
-
(1995)
Acta Numerica
, pp. 105-158
-
-
Eriksson, K.1
Estep, D.2
Hansbo, P.3
Johnson, C.4
-
19
-
-
0040364383
-
Optimal approximation of stochastic differential equations by adaptive step-size control
-
Hofmann, N., P. Müller-Gronbach, and K. Ritter. 2000. Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp. 69:1017-1034.
-
(2000)
Math. Comp.
, vol.69
, pp. 1017-1034
-
-
Hofmann, N.1
Müller-Gronbach, P.2
Ritter, K.3
-
20
-
-
0035294723
-
The optimal discretization of stochastic differential equations
-
Hofmann, N., P. Müller-Gronbach, and K. Ritter. 2001. The optimal discretization of stochastic differential equations. J. Complexity 17:117-153.
-
(2001)
J. Complexity
, vol.17
, pp. 117-153
-
-
Hofmann, N.1
Müller-Gronbach, P.2
Ritter, K.3
-
22
-
-
84990662772
-
Adaptive finite element methods for conservation laws based on a posteriori error estimates
-
Johnson, C. and A. Szepessy. 1995. Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math. 48:199-234.
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, pp. 199-234
-
-
Johnson, C.1
Szepessy, A.2
-
23
-
-
13844315285
-
-
New York, NY: Cambridge University Press
-
Jouini, C., J. Cvitanić, and M. Musiela. 2001. Option Pricing, Interest Rates and Risk Management. New York, NY: Cambridge University Press.
-
(2001)
Option Pricing, Interest Rates and Risk Management
-
-
Jouini, C.1
Cvitanić, J.2
Musiela, M.3
-
24
-
-
0003242243
-
Brownian motion and stochastic calculus
-
New York, NY: Springer-Verlag
-
Karatzas, I., and S. E. Shreve. 1998. Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics 113. New York, NY: Springer-Verlag.
-
(1998)
Graduate Texts in Mathematics
, vol.113
-
-
Karatzas, I.1
Shreve, S.E.2
-
25
-
-
0003335723
-
Numerical solution of stochastic differential equations
-
Kloeden, P. E., and E. Platen. 1992. Numerical solution of stochastic differential equations. Applications of Mathematics 23.
-
(1992)
Applications of Mathematics
, pp. 23
-
-
Kloeden, P.E.1
Platen, E.2
-
26
-
-
0035607876
-
A mathematical framework for stochastic climate models
-
Majda, A., I. Timofeyev, and E. Vanden Eijnden. 2001. A mathematical framework for stochastic climate models. Comm. Pure Appl. Math. 54: 891-974.
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, pp. 891-974
-
-
Majda, A.1
Timofeyev, I.2
Eijnden, E.V.3
-
27
-
-
0040974257
-
Numerical integration of stochastic differential equations
-
Milstein, G. N. 1995. Numerical integration of stochastic differential equations, Mathematics and its Applications 313.
-
(1995)
Mathematics and Its Applications
, pp. 313
-
-
Milstein, G.N.1
-
28
-
-
20444421122
-
-
Moler. C. 1995. Random thoughts (http://www.mathworks.com/company/ newsletter/pdf/Cleve.pdf).
-
(1995)
Random Thoughts
-
-
Moler, C.1
-
30
-
-
20444392987
-
Hyperbolic differential equations and adaptive numerics
-
Durham 2000 eds. J. F. Blowey, J. P. Coleman and A. W. Craig. Universitext, Springer: Berlin
-
Moon, K.-S., A. Szepessy, R. Tempone, and G. E. Zouraris, 2001. Hyperbolic differential equations and adaptive numerics. In Theory and Numerics of Differential Equations, Durham 2000 eds. J. F. Blowey, J. P. Coleman and A. W. Craig. Universitext, Springer: Berlin, 231-280.
-
(2001)
Theory and Numerics of Differential Equations
, pp. 231-280
-
-
Moon, K.-S.1
Szepessy, A.2
Tempone, R.3
Zouraris, G.E.4
-
31
-
-
0742306487
-
A variational principle for adaptive approximation of ordinary differential equations
-
Moon, K.-S., A. Szepessy, R. Tempone, and G. E. Zouraris. 2003. A variational principle for adaptive approximation of ordinary differential equations. Numer. Math. 93:131-152.
-
(2003)
Numer. Math.
, vol.93
, pp. 131-152
-
-
Moon, K.-S.1
Szepessy, A.2
Tempone, R.3
Zouraris, G.E.4
-
32
-
-
0742289173
-
Convergence rates for adaptive approximation of ordinary differential equation
-
Moon, K.-S., A. Szepessy, R. Tempone, and G. E. Zouraris. 2003. Convergence rates for adaptive approximation of ordinary differential equation. Numer. Math. 93:99-129.
-
(2003)
Numer. Math.
, vol.93
, pp. 99-129
-
-
Moon, K.-S.1
Szepessy, A.2
Tempone, R.3
Zouraris, G.E.4
-
33
-
-
0034447334
-
Data oscillation and convergence of adaptive FEM
-
Morin, R., H. Nochetto, and K. G. Sieber. 2000. Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2):466-488.
-
(2000)
SIAM J. Numer. Anal.
, vol.38
, Issue.2
, pp. 466-488
-
-
Morin, R.1
Nochetto, H.2
Sieber, K.G.3
-
34
-
-
0041969994
-
The optimal uniform approximation of systems of stochastic differential equations
-
Müller-Gronbach, 2002. The optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Probab. 12(2):664-690.
-
(2002)
Ann. Appl. Probab.
, vol.12
, Issue.2
, pp. 664-690
-
-
Müller-Gronbach1
-
35
-
-
0003326139
-
The Malliavin calculus and related topics
-
New York: Springer-Verlag
-
Nualart, D. 1995. The Malliavin calculus and related topics. Probability and its Applications. New York: Springer-Verlag.
-
(1995)
Probability and Its Applications
-
-
Nualart, D.1
-
39
-
-
0035641113
-
Adaptive weak approximation of stochastic differential equations
-
Szepessy, A., R. Tempone, and G. E. Zouraris. 2001. Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54(10):1169-1214
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, Issue.10
, pp. 1169-1214
-
-
Szepessy, A.1
Tempone, R.2
Zouraris, G.E.3
-
40
-
-
0003208202
-
Simulation of stochastic differential systems
-
P. Krée, and W. Wedig, Lecture notes in Physics, eds. 451. Berlin: Springer
-
Talay, D. 1995. Simulation of stochastic differential systems. In Probabilistic Method in Applied Physics. (P. Krée, and W. Wedig, 54-96, Lecture notes in Physics, eds. 451. Berlin: Springer.
-
(1995)
Probabilistic Method in Applied Physics
, pp. 54-96
-
-
Talay, D.1
-
41
-
-
0000124397
-
Expansion of the global error for numerical schemes solving stochastic differential equation
-
Talay, D. and L. Tubaro. 1990. Expansion of the global error for numerical schemes solving stochastic differential equation. Stochastic Anal. Appl. 8:483-509.
-
(1990)
Stochastic Anal. Appl.
, vol.8
, pp. 483-509
-
-
Talay, D.1
Tubaro, L.2
|