메뉴 건너뛰기




Volumn 23, Issue 3, 2005, Pages 511-558

Convergence rates for adaptive weak approximation of stochastic differential equations

Author keywords

Adaptive mesh refinement algorithm; Almost sure convergence; Computational complexity; Monte Carlo method; Stochastic differential equations

Indexed keywords


EID: 20444378209     PISSN: 07362994     EISSN: 15329356     Source Type: Journal    
DOI: 10.1081/SAP-200056678     Document Type: Article
Times cited : (32)

References (41)
  • 1
    • 0348193007 scopus 로고    scopus 로고
    • Soliton perturbations and the random Kepler problem
    • Abdullaev, F. Kh., J. C. Bronski and G. Papanicolaou. 2000. Soliton perturbations and the random Kepler problem. Phys. D. 135:369-386.
    • (2000) Phys. D. , vol.135 , pp. 369-386
    • Abdullaev, F.Kh.1    Bronski, J.C.2    Papanicolaou, G.3
  • 3
    • 0000613724 scopus 로고
    • Error estimates for adaptive finite element computations
    • Babuška, I. and W. C. Rheinboldt. 1978. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15:736-754.
    • (1978) SIAM J. Numer. Anal. , vol.15 , pp. 736-754
    • Babuška, I.1    Rheinboldt, W.C.2
  • 4
    • 0001772076 scopus 로고
    • Feedback and adaptive finite element solution of one-dimensional boundary value problems
    • Babuška, I. and M. Vogelius. 1984. Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44(1):75-102.
    • (1984) Numer. Math. , vol.44 , Issue.1 , pp. 75-102
    • Babuška, I.1    Vogelius, M.2
  • 5
    • 0030383153 scopus 로고    scopus 로고
    • A feed-back approach to error control in finite element methods: Basic analysis and examples
    • Becker, R., and R. Rannacher. 1996. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. (4)237-264.
    • (1996) East-West J. Numer. Math. , Issue.4 , pp. 237-264
    • Becker, R.1    Rannacher, R.2
  • 6
    • 85022001969 scopus 로고    scopus 로고
    • An optimal control approach to a posteriori error estimation in finite element methods
    • Becker, R., and R. Rannacher. 2001. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 1-102.
    • (2001) Acta Numerica , pp. 1-102
    • Becker, R.1    Rannacher, R.2
  • 7
    • 2442452617 scopus 로고    scopus 로고
    • Adaptive finite element methods with convergence rates
    • Binev, P., W. Dahmen, and R. DeVore. 2004. Adaptive finite element methods with convergence rates. Numer. Math. 97(2):219-268.
    • (2004) Numer. Math. , vol.97 , Issue.2 , pp. 219-268
    • Binev, P.1    Dahmen, W.2    Devore, R.3
  • 9
    • 20444398382 scopus 로고    scopus 로고
    • Solving Dirichlet problems numerically using the Feynman-Kac representation
    • ETH
    • Buchmann, F., and W. Petersen. 2002. Solving Dirichlet problems numerically using the Feynman-Kac representation. Research report no. 2002-01, ETH.
    • (2002) Research Report No. 2002-01 , vol.2002 , Issue.1
    • Buchmann, F.1    Petersen, W.2
  • 10
    • 0035606214 scopus 로고    scopus 로고
    • Adaptive wavelet method for elliptic operator equations: Convergence rates
    • Cohen, A., W. Dahmen, and R. DeVore. 2000. Adaptive wavelet method for elliptic operator equations: convergence rates. Math. Comp 70(233):27-75.
    • (2000) Math. Comp , vol.70 , Issue.233 , pp. 27-75
    • Cohen, A.1    Dahmen, W.2    DeVore, R.3
  • 11
    • 85011480386 scopus 로고    scopus 로고
    • Wavellet and multiscale methods for operator equations
    • Dahmen, W. 1997. Wavellet and multiscale methods for operator equations. Acta Numerica 6:55-228.
    • (1997) Acta Numerica , vol.6 , pp. 55-228
    • Dahmen, W.1
  • 12
    • 85009724776 scopus 로고    scopus 로고
    • Nonlinear approximation
    • DeVore, R. A. 1998. Nonlinear approximation. Acta Numerica 51-150.
    • (1998) Acta Numerica , pp. 51-150
    • DeVore, R.A.1
  • 15
    • 0009522795 scopus 로고
    • Introduction to adaptive methods for differential equations
    • Eriksson, K., D. Estep, P. Hansbo, and C. Johnson. 1995. Introduction to adaptive methods for differential equations. Acta Numerica 105-158.
    • (1995) Acta Numerica , pp. 105-158
    • Eriksson, K.1    Estep, D.2    Hansbo, P.3    Johnson, C.4
  • 18
  • 19
    • 0040364383 scopus 로고    scopus 로고
    • Optimal approximation of stochastic differential equations by adaptive step-size control
    • Hofmann, N., P. Müller-Gronbach, and K. Ritter. 2000. Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp. 69:1017-1034.
    • (2000) Math. Comp. , vol.69 , pp. 1017-1034
    • Hofmann, N.1    Müller-Gronbach, P.2    Ritter, K.3
  • 20
    • 0035294723 scopus 로고    scopus 로고
    • The optimal discretization of stochastic differential equations
    • Hofmann, N., P. Müller-Gronbach, and K. Ritter. 2001. The optimal discretization of stochastic differential equations. J. Complexity 17:117-153.
    • (2001) J. Complexity , vol.17 , pp. 117-153
    • Hofmann, N.1    Müller-Gronbach, P.2    Ritter, K.3
  • 22
    • 84990662772 scopus 로고
    • Adaptive finite element methods for conservation laws based on a posteriori error estimates
    • Johnson, C. and A. Szepessy. 1995. Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math. 48:199-234.
    • (1995) Comm. Pure Appl. Math. , vol.48 , pp. 199-234
    • Johnson, C.1    Szepessy, A.2
  • 24
    • 0003242243 scopus 로고    scopus 로고
    • Brownian motion and stochastic calculus
    • New York, NY: Springer-Verlag
    • Karatzas, I., and S. E. Shreve. 1998. Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics 113. New York, NY: Springer-Verlag.
    • (1998) Graduate Texts in Mathematics , vol.113
    • Karatzas, I.1    Shreve, S.E.2
  • 25
    • 0003335723 scopus 로고
    • Numerical solution of stochastic differential equations
    • Kloeden, P. E., and E. Platen. 1992. Numerical solution of stochastic differential equations. Applications of Mathematics 23.
    • (1992) Applications of Mathematics , pp. 23
    • Kloeden, P.E.1    Platen, E.2
  • 26
    • 0035607876 scopus 로고    scopus 로고
    • A mathematical framework for stochastic climate models
    • Majda, A., I. Timofeyev, and E. Vanden Eijnden. 2001. A mathematical framework for stochastic climate models. Comm. Pure Appl. Math. 54: 891-974.
    • (2001) Comm. Pure Appl. Math. , vol.54 , pp. 891-974
    • Majda, A.1    Timofeyev, I.2    Eijnden, E.V.3
  • 27
    • 0040974257 scopus 로고
    • Numerical integration of stochastic differential equations
    • Milstein, G. N. 1995. Numerical integration of stochastic differential equations, Mathematics and its Applications 313.
    • (1995) Mathematics and Its Applications , pp. 313
    • Milstein, G.N.1
  • 28
    • 20444421122 scopus 로고
    • Moler. C. 1995. Random thoughts (http://www.mathworks.com/company/ newsletter/pdf/Cleve.pdf).
    • (1995) Random Thoughts
    • Moler, C.1
  • 30
    • 20444392987 scopus 로고    scopus 로고
    • Hyperbolic differential equations and adaptive numerics
    • Durham 2000 eds. J. F. Blowey, J. P. Coleman and A. W. Craig. Universitext, Springer: Berlin
    • Moon, K.-S., A. Szepessy, R. Tempone, and G. E. Zouraris, 2001. Hyperbolic differential equations and adaptive numerics. In Theory and Numerics of Differential Equations, Durham 2000 eds. J. F. Blowey, J. P. Coleman and A. W. Craig. Universitext, Springer: Berlin, 231-280.
    • (2001) Theory and Numerics of Differential Equations , pp. 231-280
    • Moon, K.-S.1    Szepessy, A.2    Tempone, R.3    Zouraris, G.E.4
  • 31
    • 0742306487 scopus 로고    scopus 로고
    • A variational principle for adaptive approximation of ordinary differential equations
    • Moon, K.-S., A. Szepessy, R. Tempone, and G. E. Zouraris. 2003. A variational principle for adaptive approximation of ordinary differential equations. Numer. Math. 93:131-152.
    • (2003) Numer. Math. , vol.93 , pp. 131-152
    • Moon, K.-S.1    Szepessy, A.2    Tempone, R.3    Zouraris, G.E.4
  • 32
    • 0742289173 scopus 로고    scopus 로고
    • Convergence rates for adaptive approximation of ordinary differential equation
    • Moon, K.-S., A. Szepessy, R. Tempone, and G. E. Zouraris. 2003. Convergence rates for adaptive approximation of ordinary differential equation. Numer. Math. 93:99-129.
    • (2003) Numer. Math. , vol.93 , pp. 99-129
    • Moon, K.-S.1    Szepessy, A.2    Tempone, R.3    Zouraris, G.E.4
  • 33
    • 0034447334 scopus 로고    scopus 로고
    • Data oscillation and convergence of adaptive FEM
    • Morin, R., H. Nochetto, and K. G. Sieber. 2000. Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2):466-488.
    • (2000) SIAM J. Numer. Anal. , vol.38 , Issue.2 , pp. 466-488
    • Morin, R.1    Nochetto, H.2    Sieber, K.G.3
  • 34
    • 0041969994 scopus 로고    scopus 로고
    • The optimal uniform approximation of systems of stochastic differential equations
    • Müller-Gronbach, 2002. The optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Probab. 12(2):664-690.
    • (2002) Ann. Appl. Probab. , vol.12 , Issue.2 , pp. 664-690
    • Müller-Gronbach1
  • 35
    • 0003326139 scopus 로고
    • The Malliavin calculus and related topics
    • New York: Springer-Verlag
    • Nualart, D. 1995. The Malliavin calculus and related topics. Probability and its Applications. New York: Springer-Verlag.
    • (1995) Probability and Its Applications
    • Nualart, D.1
  • 39
    • 0035641113 scopus 로고    scopus 로고
    • Adaptive weak approximation of stochastic differential equations
    • Szepessy, A., R. Tempone, and G. E. Zouraris. 2001. Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54(10):1169-1214
    • (2001) Comm. Pure Appl. Math. , vol.54 , Issue.10 , pp. 1169-1214
    • Szepessy, A.1    Tempone, R.2    Zouraris, G.E.3
  • 40
    • 0003208202 scopus 로고
    • Simulation of stochastic differential systems
    • P. Krée, and W. Wedig, Lecture notes in Physics, eds. 451. Berlin: Springer
    • Talay, D. 1995. Simulation of stochastic differential systems. In Probabilistic Method in Applied Physics. (P. Krée, and W. Wedig, 54-96, Lecture notes in Physics, eds. 451. Berlin: Springer.
    • (1995) Probabilistic Method in Applied Physics , pp. 54-96
    • Talay, D.1
  • 41
    • 0000124397 scopus 로고
    • Expansion of the global error for numerical schemes solving stochastic differential equation
    • Talay, D. and L. Tubaro. 1990. Expansion of the global error for numerical schemes solving stochastic differential equation. Stochastic Anal. Appl. 8:483-509.
    • (1990) Stochastic Anal. Appl. , vol.8 , pp. 483-509
    • Talay, D.1    Tubaro, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.