-
2
-
-
0039068380
-
-
Bouleau, N. and Lépingle, D. (1994). Numerical Methods for Stochastic Processes. Wiley, New York. MR 95h:60090
-
MR
, vol.95 H
, pp. 60090
-
-
-
3
-
-
0007470214
-
Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design
-
Cambanis, S. and Hu, Y. (1996). Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Stochastics Rep. 59, 211 240. MR 97k:60159
-
(1996)
Stochastics Stochastics Rep.
, vol.59
, pp. 211240
-
-
Cambanis, S.1
Hu, Y.2
-
4
-
-
0040252241
-
-
Cambanis, S. and Hu, Y. (1996). Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Stochastics Rep. 59, 211 240. MR 97k:60159
-
MR
, vol.97 K
, pp. 60159
-
-
-
5
-
-
0007508207
-
The maximum rate of convergence of discrete approximations
-
Stochastic Differential Systems (B. Grigelionis, ed.) Springer, Berlin
-
Clark, J. M. C. and Cameron, R. J. (1980). The maximum rate of convergence of discrete approximations. In Stochastic Differential Systems (B. Grigelionis, ed.) Lect. Notes Control Inf. Sci. 25. Springer, Berlin, 162-171. MR 82f:60133
-
(1980)
Lect. Notes Control Inf. Sci.
, vol.25
, pp. 162-171
-
-
Clark, J.M.C.1
Cameron, R.J.2
-
6
-
-
0040846710
-
-
Clark, J. M. C. and Cameron, R. J. (1980). The maximum rate of convergence of discrete approximations. In Stochastic Differential Systems (B. Grigelionis, ed.) Lect. Notes Control Inf. Sci. 25. Springer, Berlin, 162-171. MR 82f:60133
-
MR
, vol.82 F
, pp. 60133
-
-
-
8
-
-
0031258411
-
Variable step size control in the numerical solution of stochastic differential equations
-
Gaines, J. G. and Lyons, T. J. (1997). Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57, 1455-1484.
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 1455-1484
-
-
Gaines, J.G.1
Lyons, T.J.2
-
9
-
-
0039660490
-
-
MR 98m:60089
-
MR
, vol.98 M
, pp. 60089
-
-
-
11
-
-
0039787770
-
-
Kloeden, P. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Springer, Berlin. MR 94b:60069
-
MR
, vol.94 B
, pp. 60069
-
-
-
13
-
-
0030102673
-
-
q-norm. J. Complexity 12, 47 57. MR 97b:41028
-
MR
, vol.97 B
, pp. 41028
-
-
-
15
-
-
0032202905
-
-
Mauthner, S. (1998). Step size control in the numerical solution of stochastic differential equations. Mathematische Preprintreihe der TU Darmstadt 1972; finally published in J. Comput. Appl. Math. 100 (1998), 93-109. CMP 99:05
-
(1998)
J. Comput. Appl. Math.
, vol.100
, pp. 93-109
-
-
-
16
-
-
0032202905
-
-
Mauthner, S. (1998). Step size control in the numerical solution of stochastic differential equations. Mathematische Preprintreihe der TU Darmstadt 1972; finally published in J. Comput. Appl. Math. 100 (1998), 93-109. CMP 99:05
-
CMP
, vol.99
, pp. 05
-
-
-
18
-
-
0039964300
-
-
Milstein, G. N. (1995). Numerical Integration of Stochastic Differential Equations. Kluwer, Dordrecht. MR 96e:65003
-
MR
, vol.96 E
, pp. 65003
-
-
-
19
-
-
0030080044
-
Optimal design for approximating the path of a stochastic process
-
Müller-Gronbach, T. (1996). Optimal design for approximating the path of a stochastic process. J. Statist. Planning Inf. 49, 371-385. MR 97h:62087
-
(1996)
J. Statist. Planning Inf.
, vol.49
, pp. 371-385
-
-
Müller-Gronbach, T.1
-
20
-
-
0030080044
-
-
Müller-Gronbach, T. (1996). Optimal design for approximating the path of a stochastic process. J. Statist. Planning Inf. 49, 371-385. MR 97h:62087
-
MR
, vol.97 H
, pp. 62087
-
-
-
21
-
-
0000126590
-
An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times
-
Newton, N. J. (1990). An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stochastics Stochastics Rep. 29, 227-258. MR 91a:60152
-
(1990)
Stochastics Stochastics Rep.
, vol.29
, pp. 227-258
-
-
Newton, N.J.1
-
22
-
-
0039660487
-
-
Newton, N. J. (1990). An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stochastics Stochastics Rep. 29, 227-258. MR 91a:60152
-
MR
, vol.91 A
, pp. 60152
-
-
-
23
-
-
38249004329
-
Some complexity results for zero finding for univariate functions
-
Novak, E. and Ritter, K. (1993), Some complexity results for zero finding for univariate functions. J. Complexity 9, 15-40. MR 94c:65179
-
(1993)
J. Complexity
, vol.9
, pp. 15-40
-
-
Novak, E.1
Ritter, K.2
-
24
-
-
38249004329
-
-
Novak, E. and Ritter, K. (1993), Some complexity results for zero finding for univariate functions. J. Complexity 9, 15-40. MR 94c:65179
-
MR
, vol.94 C
, pp. 65179
-
-
-
25
-
-
0003237499
-
Average case analysis of numerical problems
-
Springer, Berlin, to appear
-
Ritter, K. (1999). Average Case Analysis of Numerical Problems. Lect. Notes in Math., Springer, Berlin, to appear.
-
(1999)
Lect. Notes in Math.
-
-
Ritter, K.1
-
26
-
-
0002704891
-
Statistical design and integral approximation
-
(R. Pyke, ed.) Can. Math. Soc., Montreal
-
Sacks, J. and Ylvisaker, D. (1970). Statistical design and integral approximation. In Proc. 12th Bienn. Semin. Can. Math. Congr. (R. Pyke, ed.) Can. Math. Soc., Montreal, 115-136. MR 43:2806
-
(1970)
Proc. 12th Bienn. Semin. Can. Math. Congr.
, pp. 115-136
-
-
Sacks, J.1
Ylvisaker, D.2
-
27
-
-
0039068379
-
-
Sacks, J. and Ylvisaker, D. (1970). Statistical design and integral approximation. In Proc. 12th Bienn. Semin. Can. Math. Congr. (R. Pyke, ed.) Can. Math. Soc., Montreal, 115-136. MR 43:2806
-
MR
, vol.43
, pp. 2806
-
-
-
28
-
-
0032341232
-
Approximation of continuous time stochastic processes by a local linearization method
-
Shoji, I. (1998). Approximation of continuous time stochastic processes by a local linearization method. Math. Comp. 67, 287-298. MR 98e:65207
-
(1998)
Math. Comp.
, vol.67
, pp. 287-298
-
-
Shoji, I.1
-
29
-
-
0032341232
-
-
Shoji, I. (1998). Approximation of continuous time stochastic processes by a local linearization method. Math. Comp. 67, 287-298. MR 98e:65207
-
MR
, vol.98 E
, pp. 65207
-
-
-
30
-
-
38249002021
-
Sampling designs for estimation of random processes
-
Su, Y. and Cambanis S. (1993). Sampling designs for estimation of random processes. Stochastic Processes Appl. 46, 47-89. MR 95d:62153
-
(1993)
Stochastic Processes Appl.
, vol.46
, pp. 47-89
-
-
Su, Y.1
Cambanis, S.2
-
31
-
-
38249002021
-
-
Su, Y. and Cambanis S. (1993). Sampling designs for estimation of random processes. Stochastic Processes Appl. 46, 47-89. MR 95d:62153
-
MR
, vol.95 D
, pp. 62153
-
-
-
32
-
-
0003208202
-
Simulation of stochastic differential systems
-
Probabilistic Methods in Applied Physics (P. Krée, W. Wedig, eds.), Springer, Berlin
-
Talay, D. (1995). Simulation of stochastic differential systems. In Probabilistic Methods in Applied Physics (P. Krée, W. Wedig, eds.) Lecture Notes in Physics 451, Springer, Berlin., 54-96.
-
(1995)
Lecture Notes in Physics
, vol.451
, pp. 54-96
-
-
Talay, D.1
-
34
-
-
0040252239
-
-
Traub, J. F., Wasilkowski, G. W. and Woźniakowski, H. (1988). Information-Based Complexity. Academic Press, New York. MR 90f:68085
-
MR
, vol.90 F
, pp. 68085
-
-
|