메뉴 건너뛰기




Volumn 219, Issue 3, 2005, Pages 283-298

Real-time pattern recognition in statistical process control: A hybrid neural network/decision tree-based approach

Author keywords

Control charts; Decision trees; Neural networks; Pattern recognition; Statistical process control

Indexed keywords

ALGORITHMS; DECISION THEORY; HEURISTIC METHODS; MANUFACTURE; NEURAL NETWORKS; PROCESS CONTROL; RANDOM PROCESSES; REAL TIME SYSTEMS; STATISTICAL PROCESS CONTROL; TREES (MATHEMATICS);

EID: 20144363984     PISSN: 09544054     EISSN: None     Source Type: Journal    
DOI: 10.1243/095440505X28963     Document Type: Article
Times cited : (28)

References (29)
  • 1
    • 0343313604 scopus 로고
    • Application to forecasting of neural network recognition of shifts and trends in quality control data
    • Portland, UK
    • Lucy-Bouler, T. L. Application to forecasting of neural network recognition of shifts and trends in quality control data. In Proceedings of the World Congress on Neural Networks (WCNN'93), Portland, UK, 1993, Vol. 1, pp. 631-633.
    • (1993) Proceedings of the World Congress on Neural Networks (WCNN'93) , vol.1 , pp. 631-633
    • Lucy-Bouler, T.L.1
  • 2
    • 0013527549 scopus 로고    scopus 로고
    • Robustness of the neural network based control chart pattern recognition system to non-normality
    • Guh, R. S. Robustness of the neural network based control chart pattern recognition system to non-normality. Int. J. Qual Reliability Mgmt, 2002, 19(1), 97-112.
    • (2002) Int. J. Qual Reliability Mgmt , vol.19 , Issue.1 , pp. 97-112
    • Guh, R.S.1
  • 3
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng, C. S. A multi-layer neural network model for detecting changes in the process mean. Computers Ind. Engng, 1995, 28(1), 51-61.
    • (1995) Computers Ind. Engng , vol.28 , Issue.1 , pp. 51-61
    • Cheng, C.S.1
  • 4
    • 0029341659 scopus 로고
    • Detecting process nonrandomness through a fast and cumulative learning ART-based pattern recognizer
    • Hwarng, H. B. and Chong, C. W. Detecting process nonrandomness through a fast and cumulative learning ART-based pattern recognizer. Int. J. Prod. Res., 1995, 33(7), 1817-1833.
    • (1995) Int. J. Prod. Res. , vol.33 , Issue.7 , pp. 1817-1833
    • Hwarng, H.B.1    Chong, C.W.2
  • 5
    • 0031100898 scopus 로고    scopus 로고
    • A neural network approach for the analysis of control chart patterns
    • Cheng, C. S. A neural network approach for the analysis of control chart patterns. Int. J. Prod. Res., 1997, 35(3), 667-697.
    • (1997) Int. J. Prod. Res. , vol.35 , Issue.3 , pp. 667-697
    • Cheng, C.S.1
  • 6
    • 0032092762 scopus 로고    scopus 로고
    • A review of neural networks for statistical process control
    • Zorriassatine, E and Tannock, J. D. T. A review of neural networks for statistical process control. J. Intell. Mfg, 1998, 9(3), 209-224.
    • (1998) J. Intell. Mfg , vol.9 , Issue.3 , pp. 209-224
    • Zorriassatine, E.1    Tannock, J.D.T.2
  • 7
    • 0032648097 scopus 로고    scopus 로고
    • An integrated neural network approach for simultaneous monitoring of process mean and variance shifts - A comparative study
    • Ho, E. S. and Chang, S. I. An integrated neural network approach for simultaneous monitoring of process mean and variance shifts - a comparative study. Int. J. Prod. Res., 1999, 37(8), 1881-1901.
    • (1999) Int. J. Prod. Res. , vol.37 , Issue.8 , pp. 1881-1901
    • Ho, E.S.1    Chang, S.I.2
  • 8
    • 0032686921 scopus 로고    scopus 로고
    • Recognition of control chart concurrent patterns using a neural network approach
    • Guh, R. S. and Tannock, J. D. T. Recognition of control chart concurrent patterns using a neural network approach. Int. J. Prod. Res., 1999, 37(8), 1743-1765.
    • (1999) Int. J. Prod. Res. , vol.37 , Issue.8 , pp. 1743-1765
    • Guh, R.S.1    Tannock, J.D.T.2
  • 9
    • 0001245371 scopus 로고    scopus 로고
    • Efficient control chart pattern recognition through synergistic and distributed artificial neural networks
    • Wani, M. A. and Pham D. T. Efficient control chart pattern recognition through synergistic and distributed artificial neural networks. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture, 1999, 213(B2), 157-169.
    • (1999) Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture , vol.213 , Issue.B2 , pp. 157-169
    • Wani, M.A.1    Pham, D.T.2
  • 10
    • 0037288350 scopus 로고    scopus 로고
    • Integrating artificial intelligence into online statistical process control
    • Guh, R. S. Integrating artificial intelligence into online statistical process control. Qual. Reliability Engng Int., 2003, 19(1), 1-20.
    • (2003) Qual. Reliability Engng Int. , vol.19 , Issue.1 , pp. 1-20
    • Guh, R.S.1
  • 11
    • 4243452838 scopus 로고
    • The problem of misplaced control limits
    • Alwan, L. C. and Roberts, H. V. The problem of misplaced control limits. J. R. Statist. Soc., 1995, 44(3), 269-278.
    • (1995) J. R. Statist. Soc. , vol.44 , Issue.3 , pp. 269-278
    • Alwan, L.C.1    Roberts, H.V.2
  • 14
    • 0029546317 scopus 로고
    • Proper and effective training of a pattern recognizer for cyclic data
    • Hwarng, H. B. Proper and effective training of a pattern recognizer for cyclic data. IIE Trans., 1995, 27(6), 746756.
    • (1995) IIE Trans. , vol.27 , Issue.6 , pp. 746756
    • Hwarng, H.B.1
  • 15
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T. S., Loh, W. Y., and Shih, Y. S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learning, 2000, 40(3), 203-228.
    • (2000) Mach. Learning , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3
  • 16
    • 0027579104 scopus 로고
    • Back-propagation pattern recognizers for X-bar control charts: Methodology and performance
    • Hwarng, H. B. and Hubele, N. F. Back-propagation pattern recognizers for X-bar control charts: methodology and performance. Computers Ind. Engng, 1993, 24(2), 219-235.
    • (1993) Computers Ind. Engng , vol.24 , Issue.2 , pp. 219-235
    • Hwarng, H.B.1    Hubele, N.F.2
  • 18
    • 2142653625 scopus 로고    scopus 로고
    • Optimizing feedforward neural networks for control chart pattern recognition through genetic algorithms
    • Guh, R. S. Optimizing feedforward neural networks for control chart pattern recognition through genetic algorithms. Int. J. Pattern Recognition and Artif. Intell., 2004, 18(2), 75-99.
    • (2004) Int. J. Pattern Recognition and Artif. Intell. , vol.18 , Issue.2 , pp. 75-99
    • Guh, R.S.1
  • 20
    • 0009401067 scopus 로고    scopus 로고
    • A pattern recognition algorithm for an x-bar control chart
    • Cheng, C. S. and Hubele, N. F. A pattern recognition algorithm for an x-bar control chart. IIE Trans., 1996, 28(3), 215-224.
    • (1996) IIE Trans. , vol.28 , Issue.3 , pp. 215-224
    • Cheng, C.S.1    Hubele, N.F.2
  • 21
    • 0036474654 scopus 로고    scopus 로고
    • Data mining for improving cleaning process in the semiconductor industry
    • Braha, D. and Shmilovici, A. Data mining for improving cleaning process in the semiconductor industry. IEEE Trans. Semiconductor Mfg, 2002, 15(1), 91-101.
    • (2002) IEEE Trans. Semiconductor Mfg , vol.15 , Issue.1 , pp. 91-101
    • Braha, D.1    Shmilovici, A.2
  • 23
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. Induction of decision trees. Mach. Learning, 1986, 1(1), 81-106.
    • (1986) Mach. Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 0028392602 scopus 로고
    • Control chart pattern recognition using learning vector quantization networks
    • Pham, D. T. and Oztemel, E. Control chart pattern recognition using learning vector quantization networks. Int. J. Prod. Res., 1994, 32(3), 721-729.
    • (1994) Int. J. Prod. Res. , vol.32 , Issue.3 , pp. 721-729
    • Pham, D.T.1    Oztemel, E.2
  • 25
    • 0033221564 scopus 로고    scopus 로고
    • A neural network approach to characterize pattern parameters in process control charts
    • Guh, R. S. and Tannock, J. D. T. A neural network approach to characterize pattern parameters in process control charts. J. Intell. Mfg, 1999, 10(5), 449-462.
    • (1999) J. Intell. Mfg , vol.10 , Issue.5 , pp. 449-462
    • Guh, R.S.1    Tannock, J.D.T.2
  • 26
    • 0020115211 scopus 로고
    • Combined Shewhart-CUSUM quality control schemes
    • Lucas, J. M. Combined Shewhart-CUSUM quality control schemes. J. Qual. Technol., 1982, 14(2), 51-59.
    • (1982) J. Qual. Technol. , vol.14 , Issue.2 , pp. 51-59
    • Lucas, J.M.1
  • 27
    • 0003376313 scopus 로고
    • CUSUM control charts under linear drift
    • Gan, F. F. CUSUM control charts under linear drift. Statistician, 1992, 41(1), 71-84.
    • (1992) Statistician , vol.41 , Issue.1 , pp. 71-84
    • Gan, F.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.