-
4
-
-
84972508787
-
A dimension theorem for sample functions of stable processes
-
BLUMENTHAL, R. M. and GETOOR, R. K. (1960). A dimension theorem for sample functions of stable processes. Illinois J. Math. 4 370-375.
-
(1960)
Illinois J. Math.
, vol.4
, pp. 370-375
-
-
Blumenthal, R.M.1
Getoor, R.K.2
-
5
-
-
0000361942
-
Sample functions of stochastic processes with stationary independent increments
-
BLUMENTHAL, R. M. and GETOOR, R. K. (1961). Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 493-516.
-
(1961)
J. Math. Mech.
, vol.10
, pp. 493-516
-
-
Blumenthal, R.M.1
Getoor, R.K.2
-
8
-
-
0039637031
-
On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set
-
HAWKES, J. (1971). On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z Wahrsch. Verw. Gebiete 19 90-102.
-
(1971)
Z Wahrsch. Verw. Gebiete
, vol.19
, pp. 90-102
-
-
Hawkes, J.1
-
9
-
-
0039626345
-
Image and intersection sets for subordinators
-
HAWKES, J. (1978). Image and intersection sets for subordinators. J. London Math. Soc. (2) 17 567-576.
-
(1978)
J. London Math. Soc. (2)
, vol.17
, pp. 567-576
-
-
Hawkes, J.1
-
10
-
-
0001192121
-
Potential theory of Lévy processes
-
HAWKES, J. (1979). Potential theory of Lévy processes. Proc. London Math. Soc. 38 335-352.
-
(1979)
Proc. London Math. Soc.
, vol.38
, pp. 335-352
-
-
Hawkes, J.1
-
11
-
-
0032164321
-
Exact capacity results for stable processes
-
HAWKES, J. (1998). Exact capacity results for stable processes. Probab. Theory Related Fields 112 1-11.
-
(1998)
Probab. Theory Related Fields
, vol.112
, pp. 1-11
-
-
Hawkes, J.1
-
12
-
-
0009151523
-
Uniform dimension results for processes with independent increments
-
HAWKES, J. and PRUITT, W. E. (1974). Uniform dimension results for processes with independent increments. Z. Wahrsch. Verw. Gebiete 28 277-288.
-
(1974)
Z. Wahrsch. Verw. Gebiete
, vol.28
, pp. 277-288
-
-
Hawkes, J.1
Pruitt, W.E.2
-
13
-
-
0347296019
-
Hausdorff dimension theorem in a processes with stable components An interesting counterexample
-
HENDRICKS, W. J. (1972). Hausdorff dimension theorem in a processes with stable components An interesting counterexample. Ann. Math. Stat. 43 690-694.
-
(1972)
Ann. Math. Stat.
, vol.43
, pp. 690-694
-
-
Hendricks, W.J.1
-
14
-
-
10244248469
-
A dimension theorem for sample functions of processes with stable components
-
HENDRICKS, W. J. (1973). A dimension theorem for sample functions of processes with stable components. Ann. Probab. 1 849-853.
-
(1973)
Ann. Probab.
, vol.1
, pp. 849-853
-
-
Hendricks, W.J.1
-
15
-
-
0001278145
-
Potential theory related to some multiparameter processes
-
HIRSCH, F. (1995). Potential theory related to some multiparameter processes. Potential Anal. 4 245-267.
-
(1995)
Potential Anal.
, vol.4
, pp. 245-267
-
-
Hirsch, F.1
-
16
-
-
21844493266
-
Symmetric Skorohod topology on n-variable functions and hierarchical Markov properties of n-parameter processes
-
HIRSCH, F. and SONG, S. (1995a). Symmetric Skorohod topology on n-variable functions and hierarchical Markov properties of n-parameter processes. Probab. Theory Related Fields 103 25-43.
-
(1995)
Probab. Theory Related Fields
, vol.103
, pp. 25-43
-
-
Hirsch, F.1
Song, S.2
-
17
-
-
21844515076
-
Markov properties of multiparameter processes and capacities
-
HIRSCH, F. and SONG, S. (1995b). Markov properties of multiparameter processes and capacities. Probab. Theory Related Fields 103 45-71.
-
(1995)
Probab. Theory Related Fields
, vol.103
, pp. 45-71
-
-
Hirsch, F.1
Song, S.2
-
18
-
-
0039626381
-
Ensembles parfaits et processus de Lévy
-
KAHANE, J.-P. (1972). Ensembles parfaits et processus de Lévy. Period. Math. Hungar. 2 49-59.
-
(1972)
Period. Math. Hungar.
, vol.2
, pp. 49-59
-
-
Kahane, J.-P.1
-
19
-
-
0005414698
-
Points multiples des processus de Lévy symmetriques stables restreints á un ensemble de valeurs du temps
-
KAHANE, J.-P. (1983). Points multiples des processus de Lévy symmetriques stables restreints á un ensemble de valeurs du temps. Publ. Math. Orsay (83-02) 74-105.
-
(1983)
Publ. Math. Orsay
, vol.83
, Issue.2
, pp. 74-105
-
-
Kahane, J.-P.1
-
22
-
-
0038737767
-
Two theorems on capacity for Markov processes with stationary independent increments
-
KANDA, M. (1976). Two theorems on capacity for Markov processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete 35 159-165.
-
(1976)
Z. Wahrsch. Verw. Gebiete
, vol.35
, pp. 159-165
-
-
Kanda, M.1
-
23
-
-
22644448542
-
Brownian sheet and Bessel-Riesz capacity
-
KHOSHNEVISAN, D. (1999). Brownian sheet and Bessel-Riesz capacity. Trans. Amer. Math. Soc. 351 2607-2622.
-
(1999)
Trans. Amer. Math. Soc.
, vol.351
, pp. 2607-2622
-
-
Khoshnevisan, D.1
-
25
-
-
0035993022
-
Level sets of additive Lévy process
-
KHOSHNEVISAN, D. and XIAO, Y. (2002). Level sets of additive Lévy process. Ann. Probab. 30 62-100.
-
(2002)
Ann. Probab.
, vol.30
, pp. 62-100
-
-
Khoshnevisan, D.1
Xiao, Y.2
-
26
-
-
0042244246
-
Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes
-
KHOSHNEVISAN, D. and XIAO, Y. (2003). Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes. Proc. Amer. Math. Soc. 131 2611-2616.
-
(2003)
Proc. Amer. Math. Soc.
, vol.131
, pp. 2611-2616
-
-
Khoshnevisan, D.1
Xiao, Y.2
-
27
-
-
0038674531
-
Measuring the range of an additive Lévy process
-
KHOSHNEVISAN, D., XIAO, Y. and ZHONG, Y. (2003a). Measuring the range of an additive Lévy process. Ann. Probab. 31 1097-1141.
-
(2003)
Ann. Probab.
, vol.31
, pp. 1097-1141
-
-
Khoshnevisan, D.1
Xiao, Y.2
Zhong, Y.3
-
29
-
-
0035637098
-
The most visited sites of certain Lévy processes
-
MARCUS, M. B. (2001). The most visited sites of certain Lévy processes. J. Theoret. Probab. 14 867-885.
-
(2001)
J. Theoret. Probab.
, vol.14
, pp. 867-885
-
-
Marcus, M.B.1
-
31
-
-
84972521804
-
Hausdorff-Besicovitch dimension of Brownian motion paths
-
McKEAN, H. P., JR. (1955). Hausdorff-Besicovitch dimension of Brownian motion paths. Duke Math. J. 22 229-234.
-
(1955)
Duke Math. J.
, vol.22
, pp. 229-234
-
-
McKean Jr., H.P.1
-
32
-
-
0038737770
-
Path behavior of processes with stationary independent increments
-
MILLAR, P. W. (1971). Path behavior of processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete 17 53-73.
-
(1971)
Z. Wahrsch. Verw. Gebiete
, vol.17
, pp. 53-73
-
-
Millar, P.W.1
-
33
-
-
0242623111
-
Positivity of stable densities
-
PORT, S. C. and VITALE, R. A. (1988). Positivity of stable densities. Proc. Amer. Math. Soc. 102 1018-1023.
-
(1988)
Proc. Amer. Math. Soc.
, vol.102
, pp. 1018-1023
-
-
Port, S.C.1
Vitale, R.A.2
-
34
-
-
0038433591
-
The Hausdorff dimension of the range of a process with stationary independent increments
-
PRUITT, W. E. (1969). The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 371-378.
-
(1969)
J. Math. Mech.
, vol.19
, pp. 371-378
-
-
Pruitt, W.E.1
-
35
-
-
0039960052
-
Sample path properties of processes with stable components
-
PRUITT, W. E. and TAYLOR, S. J. (1969). Sample path properties of processes with stable components. Z. Wahrsch. Verw. Gebiete 12 267-289.
-
(1969)
Z. Wahrsch. Verw. Gebiete
, vol.12
, pp. 267-289
-
-
Pruitt, W.E.1
Taylor, S.J.2
-
37
-
-
5244296214
-
The Hausdorff α-dimensional measure of Brownian paths in n-space
-
TAYLOR, S. J. (1953). The Hausdorff α-dimensional measure of Brownian paths in n-space. Proc. Cambridge Phil. Soc. 49 31-39.
-
(1953)
Proc. Cambridge Phil. Soc.
, vol.49
, pp. 31-39
-
-
Taylor, S.J.1
-
38
-
-
0010965602
-
On the connection between Hausdorff measures and generalized capacity
-
TAYLOR, S. J. (1961). On the connection between Hausdorff measures and generalized capacity. Proc. Cambridge Philos. Soc. 57 524-531.
-
(1961)
Proc. Cambridge Philos. Soc.
, vol.57
, pp. 524-531
-
-
Taylor, S.J.1
-
39
-
-
0001299350
-
Sample path properties of a transient stable process
-
TAYLOR, S. J. (1967). Sample path properties of a transient stable process. J. Math. Mech. 16 1229-1246.
-
(1967)
J. Math. Mech.
, vol.16
, pp. 1229-1246
-
-
Taylor, S.J.1
-
40
-
-
84974022175
-
The measure theory of random fractals
-
TAYLOR, S. J. (1986). The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100 383-406.
-
(1986)
Math. Proc. Cambridge Philos. Soc.
, vol.100
, pp. 383-406
-
-
Taylor, S.J.1
|