-
2
-
-
0038771515
-
Sur la règularitè des trajectoires des martingales deux indices
-
BAKRY, D. (1979). Sur la règularitè des trajectoires des martingales deux indices. Z. Wahrsch. Verw. Gebiete 50 149-157.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 149-157
-
-
Bakry, D.1
-
3
-
-
0038433626
-
Asymptotic formulas for symmetric stable semigroups
-
BENDIKOV, A. (1994). Asymptotic formulas for symmetric stable semigroups. Expo. Math. 12 381-384.
-
(1994)
Expo. Math.
, vol.12
, pp. 381-384
-
-
Bendikov, A.1
-
5
-
-
0000361942
-
Sample functions of stochastic processes with stationary independent increments
-
BLUMENTHAL, R. M. and GETOOR, R. (1961). Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 493-516.
-
(1961)
J. Math. Mech.
, vol.10
, pp. 493-516
-
-
Blumenthal, R.M.1
Getoor, R.2
-
6
-
-
0010660710
-
Résultats de Kesten sur les processus à accroisements indépendants
-
Séminaire de Probabilités V. Springer, Berlin
-
BRETAGNOLLE, J. (1971). Résultats de Kesten sur les processus à accroisements indépendants. Séminaire de Probabilités V. Lecture Notes in Math. 191 21-36. Springer, Berlin.
-
(1971)
Lecture Notes in Math.
, vol.191
, pp. 21-36
-
-
Bretagnolle, J.1
-
7
-
-
0002029239
-
Une inégalité pour martingales à indices multiples et ses applications
-
Séminaire de Probabilités VI. Springer, Berlin
-
CAIROLI, R. (1970). Une inégalité pour martingales à indices multiples et ses applications. Séminaire de Probabilités VI. Lecture Notes in Math. 124 1-27. Springer, Berlin.
-
(1970)
Lecture Notes in Math.
, vol.124
, pp. 1-27
-
-
Cairoli, R.1
-
10
-
-
0001287276
-
Sample function properties of multi-parameter stable processes
-
EHM, W. (1981). Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw. Gebiete 56 195-228.
-
(1981)
Z. Wahrsch. Verw. Gebiete
, vol.56
, pp. 195-228
-
-
Ehm, W.1
-
11
-
-
0005439109
-
Multiple points in the sample paths of a Lévy process
-
EVANS, S. N. (1987a). Multiple points in the sample paths of a Lévy process. Probab. Theory Related Fields 76 359-367.
-
(1987)
Probab. Theory Related Fields
, vol.76
, pp. 359-367
-
-
Evans, S.N.1
-
12
-
-
0005409298
-
Potential theory for a family of several Markov processes
-
EVANS, S. N. (1987b). Potential theory for a family of several Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 23 499-530.
-
(1987)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.23
, pp. 499-530
-
-
Evans, S.N.1
-
14
-
-
0000312121
-
Sample functions of stochastic processes with stationary, independent increments
-
FRISTEDT, B. (1974). Sample functions of stochastic processes with stationary, independent increments. Advances in Probability and Related Topics 3 241-396.
-
(1974)
Advances in Probability and Related Topics
, vol.3
, pp. 241-396
-
-
Fristedt, B.1
-
16
-
-
0001928818
-
A lower Lipschitz condition for the stable subordinator
-
HAWKES, J. (1971). A lower Lipschitz condition for the stable subordinator. Z. Wahrsch. Verw. Gebiete 17 23-32.
-
(1971)
Z. Wahrsch. Verw. Gebiete
, vol.17
, pp. 23-32
-
-
Hawkes, J.1
-
17
-
-
0038094780
-
Local times and zero sets for processes with infinitely divisible distributions
-
HAWKES, J. (1974) Local times and zero sets for processes with infinitely divisible distributions. J. London Math. Soc. 8 517-525.
-
(1974)
J. London Math. Soc.
, vol.8
, pp. 517-525
-
-
Hawkes, J.1
-
18
-
-
0001192121
-
Potential theory of Lévy processes
-
HAWKES, J. (1979). Potential theory of Lévy processes. Proc. London Math. Soc. 38 335-352.
-
(1979)
Proc. London Math. Soc.
, vol.38
, pp. 335-352
-
-
Hawkes, J.1
-
19
-
-
29144503868
-
Local times as stationary processes
-
K. D. Ellworthy, ed. Longman, Chicago
-
HAWKES, J. (1986). Local times as stationary processes. In From Local Times to Global Geometry (K. D. Ellworthy, ed.) 111-120. Longman, Chicago.
-
(1986)
From Local Times to Global Geometry
, pp. 111-120
-
-
Hawkes, J.1
-
20
-
-
0038094796
-
A uniform lower bound for Hausdorff dimension for transient symmetric Lévy processes
-
HENDRICS, W. J. (1983). A uniform lower bound for Hausdorff dimension for transient symmetric Lévy processes. Ann. Probab. 11 589-592.
-
(1983)
Ann. Probab.
, vol.11
, pp. 589-592
-
-
Hendrics, W.J.1
-
21
-
-
0001278145
-
Potential theory related to some multiparameter processes
-
HIRSCH, F. (1995). Potential theory related to some multiparameter processes. Potential Anal. 4 245-267.
-
(1995)
Potential Anal.
, vol.4
, pp. 245-267
-
-
Hirsch, F.1
-
22
-
-
21844493266
-
Symmetric Skorohod topology on n-variable functions and hierarchical Markov properties of n-parameter processes
-
HIRSCH, F. and SONG, S. (1995a). Symmetric Skorohod topology on n-variable functions and hierarchical Markov properties of n-parameter processes. Probab. Theory Related Fields 103 25-43.
-
(1995)
Probab. Theory Related Fields
, vol.103
, pp. 25-43
-
-
Hirsch, F.1
Song, S.2
-
23
-
-
21844515076
-
Markov properties of multiparameter processes and capacities
-
HIRSCH, F. and SONG, S. (1995b). Markov properties of multiparameter processes and capacities. Probab. Theory Related Fields 103 45-71.
-
(1995)
Probab. Theory Related Fields
, vol.103
, pp. 45-71
-
-
Hirsch, F.1
Song, S.2
-
24
-
-
21844494244
-
Some fractal sets determined by stable processes
-
HU, X. (1994). Some fractal sets determined by stable processes. Probab. Theory Related Fields 100 205-225.
-
(1994)
Probab. Theory Related Fields
, vol.100
, pp. 205-225
-
-
Hu, X.1
-
27
-
-
0013249791
-
Level sets of additive random walks
-
E. Giné, D. M. Mason and J. A. Wellner, eds. Birkhäuser, Basel
-
KHOSHNEVISAN, D. and XIAO, Y. (2000). Level sets of additive random walks. In High Dimensional Probability (E. Giné, D. M. Mason and J. A. Wellner, eds.) 329-345. Birkhäuser, Basel.
-
(2000)
High Dimensional Probability
, pp. 329-345
-
-
Khoshnevisan, D.1
Xiao, Y.2
-
28
-
-
0035993022
-
Level sets of additive Lévy processes
-
KHOSHNEVISAN, D. and XIAO, Y. (2002a). Level sets of additive Lévy processes. Ann. Probab. 30 62-100.
-
(2002)
Ann. Probab.
, vol.30
, pp. 62-100
-
-
Khoshnevisan, D.1
Xiao, Y.2
-
29
-
-
0038771507
-
Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes
-
To appear
-
KHOSHNEVISAN, D. and XIAO, Y. (2002b). Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes. Proc. Amer. Math. Soc. To appear.
-
(2002)
Proc. Amer. Math. Soc.
-
-
Khoshnevisan, D.1
Xiao, Y.2
-
31
-
-
0038433609
-
Polar sets for processes with stationary independent increments
-
J. Chover, ed. Wiley, New York
-
OREY, S. (1967). Polar sets for processes with stationary independent increments. In Markov Processes and Potential Theory (J. Chover, ed.) 117-126. Wiley, New York.
-
(1967)
Markov Processes and Potential Theory
, pp. 117-126
-
-
Orey, S.1
-
32
-
-
0038433591
-
The Hausdorff dimension of the range of a process with stationary independent increments
-
PRUITT, W. E. (1969). The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 371-378.
-
(1969)
J. Math. Mech.
, vol.19
, pp. 371-378
-
-
Pruitt, W.E.1
-
33
-
-
0030519891
-
Packing and covering indices for a general Lévy process
-
PRUITT, W. E. and TAYLOR, S. J. (1996). Packing and covering indices for a general Lévy process. Ann. Probab. 24 971-986.
-
(1996)
Ann. Probab.
, vol.24
, pp. 971-986
-
-
Pruitt, W.E.1
Taylor, S.J.2
-
35
-
-
0038433594
-
Sample path properties of processes with stationary independent increments
-
Wiley, London
-
TAYLOR, S. J. (1973). Sample path properties of processes with stationary independent increments. In Stochastic Analysis (A Tribute to the Memory of Rollo Davidson) 387-414. Wiley, London.
-
(1973)
Stochastic Analysis (A Tribute to the Memory of Rollo Davidson)
, pp. 387-414
-
-
Taylor, S.J.1
-
36
-
-
0001164931
-
Martingales with a multidimensional parameter and stochastic integrals in the plane
-
Springer, Berlin
-
WALSH, J. B. (1986). Martingales with a multidimensional parameter and stochastic integrals in the plane. Lecture Notes in Math. 1215 329-491. Springer, Berlin.
-
(1986)
Lecture Notes in Math.
, vol.1215
, pp. 329-491
-
-
Walsh, J.B.1
|