메뉴 건너뛰기




Volumn 131, Issue 8, 2003, Pages 2611-2616

Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes

Author keywords

Additive L vy processes; Infinitely divisible distributions; Potential theory; Weak unimodality

Indexed keywords


EID: 0042244246     PISSN: 00029939     EISSN: None     Source Type: Journal    
DOI: 10.1090/S0002-9939-02-06778-3     Document Type: Conference Paper
Times cited : (14)

References (11)
  • 1
    • 84968476146 scopus 로고
    • The integral of a symmetric unimodal functions over a symmetric convex set and some probability inequalities
    • MR 16:1005a
    • T. W. ANDERSON (1955). The integral of a symmetric unimodal functions over a symmetric convex set and some probability inequalities, Proc, Amer. Math. Soc. 6, 170-176. MR 16:1005a
    • (1955) Proc, Amer. Math. Soc. , vol.6 , pp. 170-176
    • Anderson, T.W.1
  • 2
    • 4043059348 scopus 로고    scopus 로고
    • Lévy processes
    • Cambridge Univ. Press, Cambridge, U.K. MR 98e:60117
    • J. BERTOIN (1996). Lévy Processes, Cambridge Tracts in Mathematics, 121, Cambridge Univ. Press, Cambridge, U.K. MR 98e:60117
    • (1996) Cambridge Tracts in Mathematics , vol.121
    • Bertoin, J.1
  • 3
    • 84968468155 scopus 로고
    • Unimodality and dominance of symmetric random vectors
    • MR 56:3917
    • M. KANTER (1977). Unimodality and dominance of symmetric random vectors, Trans. Amer. Math. Soc. 229, 65-86. MR 56:3917
    • (1977) Trans. Amer. Math. Soc. , vol.229 , pp. 65-86
    • Kanter, M.1
  • 4
    • 0035993022 scopus 로고    scopus 로고
    • Level sets of additive Lévy processes
    • D. KHOSHNEVISAN AND YIMIN XIAO (2002). Level sets of additive Lévy processes, Ann. Probab. 30, 62-100.
    • (2002) Ann. Probab. , vol.30 , pp. 62-100
    • Khoshnevisan, D.1    Xiao, Y.2
  • 5
    • 0005445145 scopus 로고
    • On a new class of unimodal infinitely divisible distribution functions and related topics
    • MR 36:5979
    • P. MEDGYESSY (1967). On a new class of unimodal infinitely divisible distribution functions and related topics, Stud. Sci. Math. Hungar. 2, 441-446. MR 36:5979
    • (1967) Stud. Sci. Math. Hungar. , vol.2 , pp. 441-446
    • Medgyessy, P.1
  • 6
    • 0000154680 scopus 로고
    • Class L of multivariate distributions and its subclasses
    • MR 81k:60023
    • K.-I. SATO (1980). Class L of multivariate distributions and its subclasses, J. Multivar. Anal. 10, 207-232. MR 81k:60023
    • (1980) J. Multivar. Anal. , vol.10 , pp. 207-232
    • Sato, K.-I.1
  • 8
    • 0005408780 scopus 로고
    • On the unimodality of infinitely divisible distribution functions
    • MR 80a:60018
    • S. J. WOLFE (1978a). On the unimodality of infinitely divisible distribution functions, Z. Wahr. Verw. Geb. 45, 329-335. MR 80a:60018
    • (1978) Z. Wahr. Verw. Geb. , vol.45 , pp. 329-335
    • Wolfe, S.J.1
  • 9
    • 0005410280 scopus 로고
    • On the unimodality of multivariate symmetric distribution functions of class L
    • MR 58:2975
    • S. J. WOLFE (1978b). On the unimodality of multivariate symmetric distribution functions of class L, J. Multivar. Anal. 8, 141-145. MR 58:2975
    • (1978) J. Multivar. Anal. , vol.8 , pp. 141-145
    • Wolfe, S.J.1
  • 10
    • 0005419103 scopus 로고
    • On the unimodality of infinitely divisible distribution functions II
    • Springer-Verlag, Berlin. MR 84f:60023
    • S. J. WOLFE (1981). On the unimodality of infinitely divisible distribution functions II, In: Analytical Methods in Probability Theory (Oberwolfach, 1980), Lect. Notes in Math. 861, 178-183, Springer-Verlag, Berlin. MR 84f:60023
    • (1981) Analytical Methods in Probability Theory (Oberwolfach, 1980), Lect. Notes in Math. , vol.861 , pp. 178-183
    • Wolfe, S.J.1
  • 11
    • 0000472011 scopus 로고
    • Unimodality of infinitely divisible distribution functions of class L
    • MR 58:2976
    • M. YAMAZATO (1978). Unimodality of infinitely divisible distribution functions of class L, Ann. Prob. 6, 523-531. MR 58:2976
    • (1978) Ann. Prob. , vol.6 , pp. 523-531
    • Yamazato, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.