메뉴 건너뛰기




Volumn 37, Issue 5, 2004, Pages 875-887

Two realizations of a general feature extraction framework

Author keywords

Class separability; Classification; Discriminant analysis; Kernel functions; Multi class feature extraction; Nonlinear feature extraction; Regularization

Indexed keywords

ALGORITHMS; DATA REDUCTION;

EID: 1842813245     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2003.10.010     Document Type: Article
Times cited : (10)

References (28)
  • 2
    • 0023863756 scopus 로고
    • Time-domain and frequency-domain feature selection for reliable radar target identification
    • Ann Arbor, MI, April 20-21
    • F.D. Garber, N.F. Chamberlain, O. Snorrason, Time-domain and frequency-domain feature selection for reliable radar target identification, Proceedings of the IEEE 1988 National Radar Conference, Ann Arbor, MI, April 20-21, 1988, pp. 79-84.
    • (1988) Proceedings of the IEEE 1988 National Radar Conference , pp. 79-84
    • Garber, F.D.1    Chamberlain, N.F.2    Snorrason, O.3
  • 3
    • 0030086309 scopus 로고    scopus 로고
    • Efficient mixed-spectrum estimation with applications to target feature extraction
    • Li J. Stoica P. Efficient mixed-spectrum estimation with applications to target feature extraction IEEE Trans. Signal Process. 44 1996 281-295
    • (1996) IEEE Trans. Signal Process. , vol.44 , pp. 281-295
    • Li, J.1    Stoica, P.2
  • 4
    • 0037288787 scopus 로고    scopus 로고
    • 2D HRR radar data modeling and processing
    • Radar Signal Process. Appl
    • Ma J. Du X. Ahalt S. 2D HRR radar data modeling and processing Multidimensional Systems Signal Process. (special issue), Radar Signal Process. Appl. 14 2003 25-48
    • (2003) Multidimensional Systems Signal Process , vol.14 , Issue.SPEC. ISSUE , pp. 25-48
    • Ma, J.1    Du, X.2    Ahalt, S.3
  • 6
    • 0015129758 scopus 로고
    • The reliability of linear feature extractors
    • Young T.Y. The reliability of linear feature extractors IEEE Trans. Comput. 20 1971 967-971
    • (1971) IEEE Trans. Comput. , vol.20 , pp. 967-971
    • Young, T.Y.1
  • 12
    • 0002916326 scopus 로고
    • Technical Report, Department of Mathematics, Yale University
    • N. Saito, R. Coifman, Local discriminant bases, Technical Report, Department of Mathematics, Yale University, 1994.
    • (1994) Local Discriminant Bases
    • Saito, N.1    Coifman, R.2
  • 14
  • 16
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G. Anouar F. Generalized discriminant analysis using a kernel approach Neural Comput. 12 10 2000 2385-2404
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 17
    • 84898984897 scopus 로고    scopus 로고
    • Nonlinear discriminant analysis using kernel functions
    • S.A. Solla, T.K. Leen, K.-R. Muller (Eds.), MIT Press, Cambridge
    • V. Roth, V. Steinhage, Nonlinear discriminant analysis using kernel functions, in: S.A. Solla, T.K. Leen, K.-R. Muller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, 1999, pp. 568-574.
    • (1999) Advances in Neural Information Processing Systems , vol.12 , pp. 568-574
    • Roth, V.1    Steinhage, V.2
  • 18
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition Data Min. Knowledge Discovery 2 2 1998 121-167
    • (1998) Data Min. Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 20
    • 84898965347 scopus 로고    scopus 로고
    • A mathematical programming approach to the Kernel Fish algorithm
    • T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), MIT Press, Cambridge
    • S. Mika, G. Rätsch, K. Müller, A mathematical programming approach to the Kernel Fish algorithm, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, Vol. 13, MIT Press, Cambridge, 2001, pp. 591-597.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 591-597
    • Mika, S.1    Rätsch, G.2    Müller, K.3
  • 22
    • 0037245005 scopus 로고    scopus 로고
    • Function replacement vs. Kernel trick
    • Ma J. Function replacement vs. Kernel trick Neurocomputing 50 2003 479-483
    • (2003) Neurocomputing , vol.50 , pp. 479-483
    • Ma, J.1
  • 24
    • 84898967665 scopus 로고    scopus 로고
    • Sampling Techniques for Kernel Methods
    • T.G. Dietterich, S. Becher, Z. Ghahramani (Eds.), MIT Press, Cambridge, MA
    • D. Achlioptas, F. McSherry, B. Schölkopf, Sampling Techniques for Kernel Methods, in: T.G. Dietterich, S. Becher, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, Vol. 14, MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Achlioptas, D.1    McSherry, F.2    Schölkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.