-
1
-
-
36149019104
-
-
Bosons and fermions are the only one-dimensional representations of the permutation group. In principle, higher-dimensional representations are possible, namely parastatistics. These representations can be interpreted in terms of bosons or fermions with some additional 'hidden' local quantum numbers. There is no topological character to these representations, and since these local quantum numbers are presumably measurable, this would not appear to be a useful arena for quantum computation. See
-
Bosons and fermions are the only one-dimensional representations of the permutation group. In principle, higher-dimensional representations are possible, namely parastatistics. These representations can be interpreted in terms of bosons or fermions with some additional 'hidden' local quantum numbers. There is no topological character to these representations, and since these local quantum numbers are presumably measurable, this would not appear to be a useful arena for quantum computation. See H.S. Green, Phys. Rev. 90 (1953) 270.
-
(1953)
Phys. Rev.
, vol.90
, pp. 270
-
-
Green, H.S.1
-
17
-
-
4243747802
-
-
see also the discussion and several of the reprints in F. Wilczek (Ed.) Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore 1990
-
F. Wilczek, Phys. Rev. Lett. 49 (1982) 957, see also the discussion and several of the reprints in F. Wilczek (Ed.) Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore 1990.
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 957
-
-
Wilczek, F.1
-
22
-
-
13144280693
-
-
R.L. Willet, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard, J.H. English, Phys. Rev. Lett. 59 (1987) 1779.
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 1779
-
-
Willet, R.L.1
Eisenstein, J.P.2
Stormer, H.L.3
Tsui, D.C.4
Gossard, A.C.5
English, J.H.6
-
23
-
-
0000515995
-
-
W. Pan, J.-S. Xia, V. Shvarts, D.E. Adams, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 83 (1999) 3530.
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 3530
-
-
Pan, W.1
Xia, J.-S.2
Shvarts, V.3
Adams, D.E.4
Stormer, H.L.5
Tsui, D.C.6
Pfeiffer, L.N.7
Baldwin, K.W.8
West, K.W.9
-
24
-
-
0035812451
-
-
W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Sol. State Commun. 119 (2001) 641.
-
(2001)
Sol. State Commun.
, vol.119
, pp. 641
-
-
Pan, W.1
Stormer, H.L.2
Tsui, D.C.3
Pfeiffer, L.N.4
Baldwin, K.W.5
West, K.W.6
-
29
-
-
0032549948
-
-
[FS]
-
E. Fradkin, C. Nayak, A. Tsvelik, F. Wilczek, Nucl. Phys. B 516[FS] (1998) 704.
-
(1998)
Nucl. Phys. B
, vol.516
, pp. 704
-
-
Fradkin, E.1
Nayak, C.2
Tsvelik, A.3
Wilczek, F.4
-
30
-
-
4244151327
-
-
J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 88 (2002) 076801.
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 076801
-
-
Eisenstein, J.P.1
Cooper, K.B.2
Pfeiffer, L.N.3
West, K.W.4
-
34
-
-
0001007394
-
-
E. Ardonne, S. Guruswamy, K. Schoutens, P. Bouwknegt, Phys. Rev. B 61 (2000) 10298.
-
(2000)
Phys. Rev. B
, vol.61
, pp. 10298
-
-
Ardonne, E.1
Guruswamy, S.2
Schoutens, K.3
Bouwknegt, P.4
-
35
-
-
0001380224
-
-
E. Ardonne, N. Read, E. Rezayi, K. Schoutens, Nucl. Phys. B 607 (2001) 549.
-
(2001)
Nucl. Phys. B
, vol.607
, pp. 549
-
-
Ardonne, E.1
Read, N.2
Rezayi, E.3
Schoutens, K.4
-
40
-
-
85030874998
-
-
unpublished notes
-
K. Walker, unpublished notes.
-
-
-
Walker, K.1
-
48
-
-
33744524965
-
-
S. Elitzur, G. Moore, A. Schwimmer, N. Seiberg, Nucl. Phys. B 326 (1989) 108.
-
(1989)
Nucl. Phys. B
, vol.326
, pp. 108
-
-
Elitzur, S.1
Moore, G.2
Schwimmer, A.3
Seiberg, N.4
-
53
-
-
0000328595
-
-
Y. Chen, F. Wilczek, E. Witten, B. Halperin, Int. J. Mod. Phys. B 3 (1989) 1001.
-
(1989)
Int. J. Mod. Phys. B
, vol.3
, pp. 1001
-
-
Chen, Y.1
Wilczek, F.2
Witten, E.3
Halperin, B.4
-
64
-
-
85030884991
-
-
quant-ph/0003128 and references therein
-
M.H. Freedman, quant-ph/0003128 and references therein.
-
-
-
Freedman, M.H.1
-
67
-
-
0037203890
-
-
L.B. Ioffe, M.V. Feigel'man, A. Ioselevich, D. Ivanov, M. Troyer, G. Blatter, Nature 415 (2002) 503.
-
(2002)
Nature
, vol.415
, pp. 503
-
-
Ioffe, L.B.1
Feigel'man, M.V.2
Ioselevich, A.3
Ivanov, D.4
Troyer, M.5
Blatter, G.6
-
68
-
-
0000481618
-
-
Berkeley, CA AMS, 1987
-
V. Drinfeld, Quantum groups, in: Proceedings of ICM, vols. 1 and 2, Berkeley, CA, 1986, pp. 798-820, AMS, 1987.
-
(1986)
Proceedings of ICM Quantum Groups
, vol.1-2
, pp. 798-820
-
-
Drinfeld, V.1
-
74
-
-
33744745173
-
Such a Hilbert space representation has been used in the context of quantum gravity
-
The similarity is greatest in 2+1 dimensions. See
-
Such a Hilbert space representation has been used in the context of quantum gravity. The similarity is greatest in 2+1 dimensions. See A. Ashtekar, V. Husain, C. Rovelli, J. Samuel, L. Smolin, Class. Quant. Grav. 6 (1989) 185.
-
(1989)
Class. Quant. Grav.
, vol.6
, pp. 185
-
-
Ashtekar, A.1
Husain, V.2
Rovelli, C.3
Samuel, J.4
Smolin, L.5
-
76
-
-
0012783530
-
-
third ed., Springer, Berlin, GTM 211
-
S. Lang, Algebra, third ed., Springer, Berlin, 2002, GTM 211.
-
(2002)
Algebra
-
-
Lang, S.1
-
79
-
-
0000615773
-
-
C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topology 34 (1995) 883.
-
(1995)
Topology
, vol.34
, pp. 883
-
-
Blanchet, C.1
Habegger, N.2
Masbaum, G.3
Vogel, P.4
-
81
-
-
85030882829
-
-
in preparation
-
M. Freedman, et al., in preparation.
-
-
-
Freedman, M.1
-
82
-
-
85030886737
-
-
Physically measurable correlation functions in 2D statistical mechanical models always combine the conformal blocks of the holomorphic and antiholomorphic parts of the theory in just such a way that the result is single-valued
-
Physically measurable correlation functions in 2D statistical mechanical models always combine the conformal blocks of the holomorphic and antiholomorphic parts of the theory in just such a way that the result is single-valued.
-
-
-
-
83
-
-
1842460798
-
-
M. Green, D. Gross (Eds.), World Scientific, Singapore
-
P. Goddard, D. Olive, in: M. Green, D. Gross (Eds.), Workshop on Unified String Theories, World Scientific, Singapore, 1986.
-
(1986)
Workshop on Unified String Theories
-
-
Goddard, P.1
Olive, D.2
-
85
-
-
0003411551
-
-
C. Domb, J.L. Lebowitz (Eds.), Academic Press, London
-
B. Nienhuis, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, vol. 11, Academic Press, London, 1987.
-
(1987)
Phase Transitions and Critical Phenomena
, vol.11
-
-
Nienhuis, B.1
-
87
-
-
0001076254
-
-
E. Domany, D. Mukamel, B. Nienhuis, A. Schwimmer, Nucl. Phys. 190 (1981) 279.
-
(1981)
Nucl. Phys.
, vol.190
, pp. 279
-
-
Domany, E.1
Mukamel, D.2
Nienhuis, B.3
Schwimmer, A.4
-
90
-
-
85030875504
-
-
For the q > 4 Potts model this is easily remedied, however. A first order transition becomes continuous after the introduction of an arbitrary small disorder [61,62]. The size of the clusters diverges at the self-dual point [63,64] and therefore the surrounding loops remain long
-
For the q > 4 Potts model this is easily remedied, however. A first order transition becomes continuous after the introduction of an arbitrary small disorder [61,62]. The size of the clusters diverges at the self-dual point [63,64] and therefore the surrounding loops remain long.
-
-
-
-
94
-
-
85030879823
-
-
cond-mat/9806355
-
J. Cardy, cond-mat/9806355, 1998.
-
(1998)
-
-
Cardy, J.1
-
99
-
-
85030878620
-
-
However, these arguments do apply to four dimensions. If a magnetic field is imposed, Landau levels form, and there is one-dimensional dispersion in the direction parallel to the magnetic field, and one can define right- and left-moving fields with respect to this direction. Therefore, an electric field parallel to the magnetic field causes a flow of current in this direction, and there is a chiral anomaly proportional to E · B
-
However, these arguments do apply to four dimensions. If a magnetic field is imposed, Landau levels form, and there is one-dimensional dispersion in the direction parallel to the magnetic field, and one can define right- and left-moving fields with respect to this direction. Therefore, an electric field parallel to the magnetic field causes a flow of current in this direction, and there is a chiral anomaly proportional to E · B.
-
-
-
|