메뉴 건너뛰기




Volumn 15, Issue 1, 2005, Pages

Dynamic characterization of hysteresis elements in mechanical systems. I. Theoretical analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 17744390629     PISSN: 10541500     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1844991     Document Type: Article
Times cited : (24)

References (38)
  • 3
    • 17744375250 scopus 로고    scopus 로고
    • Ph.D. thesis, Katholieke Universiteit Leuven, Division of Production Engineering, Machine Design and Automation
    • T. Prajogo, Ph.D. thesis, Katholieke Universiteit Leuven, Division of Production Engineering, Machine Design and Automation (1998).
    • (1998)
    • Prajogo, T.1
  • 15
    • 84958276842 scopus 로고    scopus 로고
    • Ph.D. thesis, École Polytechnique Féderale de Lausanne
    • F. Altpeter, Ph.D. thesis, École Polytechnique Féderale de Lausanne (1999).
    • (1999)
    • Altpeter, F.1
  • 16
    • 17744398918 scopus 로고    scopus 로고
    • Ph.D. thesis, Katholieke Universiteit Leuven, Division of Production Engineering, Machine Design and Automation
    • C. Ganseman, Ph.D. thesis, Katholieke Universiteit Leuven, Division of Production Engineering, Machine Design and Automation (1998).
    • (1998)
    • Ganseman, C.1
  • 24
    • 84958276843 scopus 로고    scopus 로고
    • note
    • i).
  • 25
    • 84958276844 scopus 로고    scopus 로고
    • note
    • Since the values for most parameters in this Part I of the paper are not based on physical measurements and only qualitative differences between the different results are examined, no units are assigned to the numerical values of the different variables.
  • 29
    • 84958276845 scopus 로고    scopus 로고
    • note
    • Note that in this formulation of the friction force, the dependency of f on the sign of the velocity is made explicit.
  • 30
    • 84958276846 scopus 로고    scopus 로고
    • note
    • This choice makes calculations somewhat easier.
  • 31
    • 84958276847 scopus 로고    scopus 로고
    • note
    • Absolute frequency response functions show the frequency content of the respective output signals without dividing them by the amplitude of the input signal, only the phase information of the input signal is used. This way the phase shift between the input frequency and the fundamental frequency of the output signal can be plotted. The reason for using the AFRF in this Part I of the paper instead of the commonly used frequency response functions (FRF), where the output is divided by the input, is that the AFRFs give more clear figures for the analysis considered here.
  • 32
    • 84958276848 scopus 로고    scopus 로고
    • note
    • The excitation amplitudes for all Case A AFRFs considered in this Part I of the paper are: 0.4; 0.6; 0.8; 0.9; 0.99; 0.8x4π; 1.2 and 1.4.
  • 33
    • 84958276849 scopus 로고    scopus 로고
    • note
    • This well-known behavior in nonlinear analysis is called "folding."
  • 34
    • 84958276850 scopus 로고    scopus 로고
    • note
    • The excitation amplitudes for all Case B AFRFs considered in this Part I of the paper are: 0.05; 0.1; 0.5; 2 and 10.
  • 35
    • 84958276851 scopus 로고    scopus 로고
    • note
    • The excitation amplitudes are: 0.9; 1.1; 1.2; 1.5 and 1.8 for a virgin curve with a saturation force of 1.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.