-
1
-
-
0033920795
-
Replication of hepatitis C virus
-
Bartenschlager R, Lohmann V. Replication of hepatitis C virus. J Gen Virol 2000; 81: 1631-1648.
-
(2000)
J Gen Virol
, vol.81
, pp. 1631-1648
-
-
Bartenschlager, R.1
Lohmann, V.2
-
2
-
-
0033992516
-
Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties
-
Reed KE, Rice CM. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol 2001; 242: 55-84.
-
(2001)
Curr Top Microbiol Immunol
, vol.242
, pp. 55-84
-
-
Reed, K.E.1
Rice, C.M.2
-
3
-
-
0030823630
-
Secondary structure determination of the conserved 98-base sequence at the 3′ terminus of hepatitis C virus genome RNA
-
Blight KJ, Rice CM. Secondary structure determination of the conserved 98-base sequence at the 3′ terminus of hepatitis C virus genome RNA. J Virol 1997; 71: 7345-7352.
-
(1997)
J Virol
, vol.71
, pp. 7345-7352
-
-
Blight, K.J.1
Rice, C.M.2
-
4
-
-
0030812847
-
Determination of the secondary structure of and cellular protein binding to the 3′-untranslated region of the hepatitis C virus RNA genome
-
Ito T, Lai MMC. Determination of the secondary structure of and cellular protein binding to the 3′-untranslated region of the hepatitis C virus RNA genome. J Virol 1997; 71: 8698-8706.
-
(1997)
J Virol
, vol.71
, pp. 8698-8706
-
-
Ito, T.1
Lai, M.M.C.2
-
5
-
-
0036636431
-
Template requirements for de novo RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase on the viral X RNA
-
Kim M, Kim H, Cho SP, Min MK. Template requirements for de novo RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase on the viral X RNA. J Virol 2002; 76: 6944-6956.
-
(2002)
J Virol
, vol.76
, pp. 6944-6956
-
-
Kim, M.1
Kim, H.2
Cho, S.P.3
Min, M.K.4
-
6
-
-
0037372808
-
Structure-function analysis of the 3′ stem-loop of hepatitis C virus genomic RNA and its role in viral RNA replication
-
Yi M, Lemon SM. Structure-function analysis of the 3′ stem-loop of hepatitis C virus genomic RNA and its role in viral RNA replication. RNA 2003; 9: 331-345.
-
(2003)
RNA
, vol.9
, pp. 331-345
-
-
Yi, M.1
Lemon, S.M.2
-
7
-
-
0036094885
-
Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication
-
Friebe P, Bartenschlager R. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 2002; 76: 5326-5338.
-
(2002)
J Virol
, vol.76
, pp. 5326-5338
-
-
Friebe, P.1
Bartenschlager, R.2
-
8
-
-
0037332361
-
3′ nontranslated RNA signals required for replication of hepatitis C virus RNA
-
Yi M, Lemon SM. 3′ nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol 2003; 77: 3557-3568.
-
(2003)
J Virol
, vol.77
, pp. 3557-3568
-
-
Yi, M.1
Lemon, S.M.2
-
9
-
-
0033515094
-
In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone
-
Yanagi M, St. Claire M, Emerson SU, Purcell RH, Bukh J. In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci USA 1999; 96: 2291-2295.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 2291-2295
-
-
Yanagi, M.1
St. Claire, M.2
Emerson, S.U.3
Purcell, R.H.4
Bukh, J.5
-
10
-
-
0033920304
-
Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo
-
Kolykhalov AA, Mihalik K, Feinstone SM, Rice CM. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol 2000; 74: 2046-2051.
-
(2000)
J Virol
, vol.74
, pp. 2046-2051
-
-
Kolykhalov, A.A.1
Mihalik, K.2
Feinstone, S.M.3
Rice, C.M.4
-
11
-
-
0035152913
-
Hepatitis C virus 3′X region interacts with human ribosomal proteins
-
Wood J, Frederickson RM, Fields S, Patel AH. Hepatitis C virus 3′X region interacts with human ribosomal proteins. J Virol 2001; 75: 1348-1358.
-
(2001)
J Virol
, vol.75
, pp. 1348-1358
-
-
Wood, J.1
Frederickson, R.M.2
Fields, S.3
Patel, A.H.4
-
12
-
-
0030861248
-
Specific interaction of polypyrimidine tract-binding protein with the extreme 3′-terminal structure of the hepatitis C virus genome, the 3′X
-
Tsuchihara K, Tanaka T, Hijikata M et al. Specific interaction of polypyrimidine tract-binding protein with the extreme 3′-terminal structure of the hepatitis C virus genome, the 3′X. J Virol 1997; 71: 6720-6726.
-
(1997)
J Virol
, vol.71
, pp. 6720-6726
-
-
Tsuchihara, K.1
Tanaka, T.2
Hijikata, M.3
-
13
-
-
0030864915
-
Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA
-
Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM, Rice CM. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 1997; 277: 570-574.
-
(1997)
Science
, vol.277
, pp. 570-574
-
-
Kolykhalov, A.A.1
Agapov, E.V.2
Blight, K.J.3
Mihalik, K.4
Feinstone, S.M.5
Rice, C.M.6
-
14
-
-
0036776653
-
Secondary structure and hybridization accessibility of hepatitis C virus 3′-terminal sequences
-
Smith RM, Walton CM, Wu CH, Wu GY. Secondary structure and hybridization accessibility of hepatitis C virus 3′-terminal sequences. J Virol 2002; 76: 9563-9574.
-
(2002)
J Virol
, vol.76
, pp. 9563-9574
-
-
Smith, R.M.1
Walton, C.M.2
Wu, C.H.3
Wu, G.Y.4
-
15
-
-
0029619816
-
Kinetic characteristics of Escherichia coli RNase H1: Cleavage of various antisense oligonucleotide-RNA duplexes
-
Crooke ST, Lemonidis KM, Neilson L, Griffey R, Lesnik EA, Monia BP. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes. Biochem J 1995; 312: 599-608.
-
(1995)
Biochem J
, vol.312
, pp. 599-608
-
-
Crooke, S.T.1
Lemonidis, K.M.2
Neilson, L.3
Griffey, R.4
Lesnik, E.A.5
Monia, B.P.6
-
16
-
-
0002287019
-
Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide
-
Barciszewski J, Clark BFC, eds. Dordrecht, The Netherlands: Kluwer Academic Publishers
-
Zucker M, Mathews DH, Turner DH. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC, eds. RNA Biochemistry and Biotechnology. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1999: 11-43.
-
(1999)
RNA Biochemistry and Biotechnology
, pp. 11-43
-
-
Zucker, M.1
Mathews, D.H.2
Turner, D.H.3
-
17
-
-
0030829855
-
RnaViz, a program for the visualisation of RNA secondary structure
-
De Rijk P, De Wachter R, RnaViz, a program for the visualisation of RNA secondary structure. Nucl Acids Res 1997; 25: 4679-4684.
-
(1997)
Nucl Acids Res
, vol.25
, pp. 4679-4684
-
-
De Rijk, P.1
De Wachter, R.2
-
18
-
-
0033947287
-
Hybridization of antisense reagents to RNA
-
Sohail M, Southern EM. Hybridization of antisense reagents to RNA. Curr Opin Mol Ther 2000; 2: 264-271.
-
(2000)
Curr Opin Mol Ther
, vol.2
, pp. 264-271
-
-
Sohail, M.1
Southern, E.M.2
-
20
-
-
0037332588
-
Role of the 5′-proximal stem-loop structure of the 5′ untranslated region in replication and translation of hepatitis C virus RNA
-
Luo G, Xin S, Cai Z. Role of the 5′-proximal stem-loop structure of the 5′ untranslated region in replication and translation of hepatitis C virus RNA. J Virol 2003; 77: 3312-3318.
-
(2003)
J Virol
, vol.77
, pp. 3312-3318
-
-
Luo, G.1
Xin, S.2
Cai, Z.3
-
21
-
-
0024522801
-
Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells: Importance of the 5′ untranslated leader
-
Fuerst TR, Moss B. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells: importance of the 5′ untranslated leader. Mol Biol 1989; 206: 333-348.
-
(1989)
Mol Biol
, vol.206
, pp. 333-348
-
-
Fuerst, T.R.1
Moss, B.2
-
22
-
-
0031587993
-
Structural modifications of RNA influence the 5′ exoribonucleolytic hydrolysis by XRN1 and HKE1 of Saccharomyces cerevisiae
-
Poole TL, Stevens A. Structural modifications of RNA influence the 5′ exoribonucleolytic hydrolysis by XRN1 and HKE1 of Saccharomyces cerevisiae. Biochem Biophys Res Commun 1997; 235: 799-805.
-
(1997)
Biochem Biophys Res Commun
, vol.235
, pp. 799-805
-
-
Poole, T.L.1
Stevens, A.2
|